论文标题

Atari-5:将街机学习环境提炼到五场比赛

Atari-5: Distilling the Arcade Learning Environment down to Five Games

论文作者

Aitchison, Matthew, Sweetser, Penny, Hutter, Marcus

论文摘要

街机学习环境(ALE)已成为评估增强学习算法的性能的重要基准。但是,在整个57游戏数据集中生成结果的计算成本限制了ALE的使用,并使许多结果的可重复性变得不可行。我们以一种原则性方法的形式提出了一种新的解决方案,以选择基准套件中环境的小但代表性的子集的形式。我们应用了我们的方法来识别五个ALE游戏的子集,称为Atari-5,该游戏的中位数得分估计值在其真实值的10%以内。将子集扩展到10游戏可恢复57场比赛中所有游戏的日志评分方差的80%。由于啤酒中的许多游戏之间的高度相关性,我们可以显示这种压缩水平。

The Arcade Learning Environment (ALE) has become an essential benchmark for assessing the performance of reinforcement learning algorithms. However, the computational cost of generating results on the entire 57-game dataset limits ALE's use and makes the reproducibility of many results infeasible. We propose a novel solution to this problem in the form of a principled methodology for selecting small but representative subsets of environments within a benchmark suite. We applied our method to identify a subset of five ALE games, called Atari-5, which produces 57-game median score estimates within 10% of their true values. Extending the subset to 10-games recovers 80% of the variance for log-scores for all games within the 57-game set. We show this level of compression is possible due to a high degree of correlation between many of the games in ALE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源