论文标题

双重稳健的近端合成控制

Doubly Robust Proximal Synthetic Controls

论文作者

Qiu, Hongxiang, Shi, Xu, Miao, Wang, Dobriban, Edgar, Tchetgen, Eric Tchetgen

论文摘要

为了使用面板数据来推断单个处理单元的治疗效果,合成控制方法构建了控制单元的结果的线性组合,该方法模仿了处理过的单元的预处理结果轨迹。如果在治疗后期未对其进行治疗,则该线性组合随后被用来指定治疗单元的反事实结果,并用于估计治疗效果。现有的合成控制方法依赖于正确建模反事实结果生成机制的某些方面,并且可能需要对预处理轨迹的完美匹配。受近端因果推断的启发,我们获得了两个新型的非参数识别公式,用于治疗单位的平均治疗效果:一个是基于加权的,而另一个结合了反事实结果和加权功能的模型。我们将协变量转移的概念介绍给合成控制,以获得这些识别结果,条件是在治疗分配的条件下。我们还基于这两个公式和一般的力矩方法开发了两个治疗效应估计器。一个新的估计器具有双重稳定性:如果正确指定了至少一个结果和加权模型,则它是一致的,渐近地正常。我们通过模拟证明了这些方法的性能,并将其应用于评估肺炎球菌结合物疫苗对巴西全因肺炎风险的有效性。

To infer the treatment effect for a single treated unit using panel data, synthetic control methods construct a linear combination of control units' outcomes that mimics the treated unit's pre-treatment outcome trajectory. This linear combination is subsequently used to impute the counterfactual outcomes of the treated unit had it not been treated in the post-treatment period, and used to estimate the treatment effect. Existing synthetic control methods rely on correctly modeling certain aspects of the counterfactual outcome generating mechanism and may require near-perfect matching of the pre-treatment trajectory. Inspired by proximal causal inference, we obtain two novel nonparametric identifying formulas for the average treatment effect for the treated unit: one is based on weighting, and the other combines models for the counterfactual outcome and the weighting function. We introduce the concept of covariate shift to synthetic controls to obtain these identification results conditional on the treatment assignment. We also develop two treatment effect estimators based on these two formulas and the generalized method of moments. One new estimator is doubly robust: it is consistent and asymptotically normal if at least one of the outcome and weighting models is correctly specified. We demonstrate the performance of the methods via simulations and apply them to evaluate the effectiveness of a Pneumococcal conjugate vaccine on the risk of all-cause pneumonia in Brazil.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源