论文标题

因子增强稀疏吞吐量深度恢复神经网络,用于高维回归

Factor Augmented Sparse Throughput Deep ReLU Neural Networks for High Dimensional Regression

论文作者

Fan, Jianqing, Gu, Yihong

论文摘要

本文引入了一个因子增强的稀疏吞吐量(快速)模型,该模型利用了潜在因素和稀疏的特质组件进行非参数回归。快速模型桥接一端的因子模型,另一端稀疏的非参数模型。它包括结构化的非参数模型,例如因子增强添加剂模型和稀疏的低维非参数相互作用模型,并涵盖了协变量不接收因子结构的情况。通过多元化的投影作为潜在因子空间的估计,我们在没有正则化的无参数式因素回归中采用了截短的深层relu网络,并使用非凸正态化采用了更通用的快速模型,从而分别使用神经网络(FAR-NN)和FAST-NN估计器进行了因子增强回归。我们表明,使用层次最小值速率中的层次组成模型适应了远-NN和Fast-NN估计器适应未知的低维结构。我们还使用更具体的神经网络体系结构研究了因子增强稀疏加性模型的统计学习。我们的结果适用于没有因素结构的较弱的依赖病例。在证明Fast-NN的主要技术结果时,我们建立了一个新的深层relu网络近似结果,这有助于神经网络理论的基础。模拟研究以及对宏观经济数据的应用进一步支持我们的理论和方法。

This paper introduces a Factor Augmented Sparse Throughput (FAST) model that utilizes both latent factors and sparse idiosyncratic components for nonparametric regression. The FAST model bridges factor models on one end and sparse nonparametric models on the other end. It encompasses structured nonparametric models such as factor augmented additive models and sparse low-dimensional nonparametric interaction models and covers the cases where the covariates do not admit factor structures. Via diversified projections as estimation of latent factor space, we employ truncated deep ReLU networks to nonparametric factor regression without regularization and to a more general FAST model using nonconvex regularization, resulting in factor augmented regression using neural network (FAR-NN) and FAST-NN estimators respectively. We show that FAR-NN and FAST-NN estimators adapt to the unknown low-dimensional structure using hierarchical composition models in nonasymptotic minimax rates. We also study statistical learning for the factor augmented sparse additive model using a more specific neural network architecture. Our results are applicable to the weak dependent cases without factor structures. In proving the main technical result for FAST-NN, we establish a new deep ReLU network approximation result that contributes to the foundation of neural network theory. Our theory and methods are further supported by simulation studies and an application to macroeconomic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源