论文标题

多模式任务分布的不确定性意识元学习

Uncertainty-Aware Meta-Learning for Multimodal Task Distributions

论文作者

Almecija, Cesar, Sharma, Apoorva, Azizan, Navid

论文摘要

元学习或学习学习是一种流行的方法,可以通过利用不同任务之间的共同点来学习有限的数据(即,很少学习)的新任务。但是,当上下文数据受到限制或从分布(OOD)任务中获取数据时,元学习模型的性能较差。特别是在关键安全环境中,这需要一种不确定性的元学习方法。此外,任务分布的多模式性质通常会对元学习方法构成独特的挑战。在这项工作中,我们提出了无限制(多模式任务分布的不确定性感知元学习),这是一种新颖的元学习方法,((1)对分布任务做出概率预测,(2)能够在测试时间检测OOD上下文数据,并且(3)在多种元素上进行多种多样的多态任务。为了实现这一目标,我们采用概率的观点,并在元数据上训练参数,可调的分布。我们通过在线性化神经网络上进行贝叶斯推断来构建这种分布,从而利用高斯过程理论。我们证明,UnliMitd的预测与标准基线相比,尤其是在低数据表中,比较优于和跑赢大多数。此外,我们表明Unlimitd有效地检测来自OOD任务的数据。最后,我们确认这两个发现都在多模式任务 - 分布设置中继续存在。

Meta-learning or learning to learn is a popular approach for learning new tasks with limited data (i.e., few-shot learning) by leveraging the commonalities among different tasks. However, meta-learned models can perform poorly when context data is limited, or when data is drawn from an out-of-distribution (OoD) task. Especially in safety-critical settings, this necessitates an uncertainty-aware approach to meta-learning. In addition, the often multimodal nature of task distributions can pose unique challenges to meta-learning methods. In this work, we present UnLiMiTD (uncertainty-aware meta-learning for multimodal task distributions), a novel method for meta-learning that (1) makes probabilistic predictions on in-distribution tasks efficiently, (2) is capable of detecting OoD context data at test time, and (3) performs on heterogeneous, multimodal task distributions. To achieve this goal, we take a probabilistic perspective and train a parametric, tuneable distribution over tasks on the meta-dataset. We construct this distribution by performing Bayesian inference on a linearized neural network, leveraging Gaussian process theory. We demonstrate that UnLiMiTD's predictions compare favorably to, and outperform in most cases, the standard baselines, especially in the low-data regime. Furthermore, we show that UnLiMiTD is effective in detecting data from OoD tasks. Finally, we confirm that both of these findings continue to hold in the multimodal task-distribution setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源