论文标题
提高抽象性摘要中的忠诚
Towards Improving Faithfulness in Abstractive Summarization
论文作者
论文摘要
尽管基于预训练的语言模型的神经抽象摘要取得了成功,但一个未解决的问题是,生成的摘要并不总是忠于输入文档。不忠实问题有两个可能的原因:(1)摘要模型无法理解或捕获输入文本的要旨,以及(2)模型在语言模型上的过度播放,以产生流利但不足的单词。在这项工作中,我们提出了一个忠诚增强的摘要模型(FES),该模型旨在解决这两个问题并改善抽象性摘要中的忠诚。对于第一个问题,我们建议使用问答(QA)检查编码器是否完全掌握输入文档,并可以回答有关输入中关键信息的问题。质量检查对适当输入词的关注也可以用来规定解码器应如何参与来源。对于第二个问题,我们引入了在语言和摘要模型之间的差异上定义的最大修订损失,旨在防止语言模型的过度自信。对CNN/DM和XSUM的两个基准汇总数据集进行了广泛的实验,表明我们的模型显着胜过强大的基线。对事实一致性的评估还表明,我们的模型比基线产生更多的忠实摘要。
Despite the success achieved in neural abstractive summarization based on pre-trained language models, one unresolved issue is that the generated summaries are not always faithful to the input document. There are two possible causes of the unfaithfulness problem: (1) the summarization model fails to understand or capture the gist of the input text, and (2) the model over-relies on the language model to generate fluent but inadequate words. In this work, we propose a Faithfulness Enhanced Summarization model (FES), which is designed for addressing these two problems and improving faithfulness in abstractive summarization. For the first problem, we propose to use question-answering (QA) to examine whether the encoder fully grasps the input document and can answer the questions on the key information in the input. The QA attention on the proper input words can also be used to stipulate how the decoder should attend to the source. For the second problem, we introduce a max-margin loss defined on the difference between the language and the summarization model, aiming to prevent the overconfidence of the language model. Extensive experiments on two benchmark summarization datasets, CNN/DM and XSum, demonstrate that our model significantly outperforms strong baselines. The evaluation of factual consistency also shows that our model generates more faithful summaries than baselines.