论文标题

Bang-bang促进RRTS

Bang-Bang Boosting of RRTs

论文作者

LaValle, Alexander J., Sakcak, Basak, LaValle, Steven M.

论文摘要

本文介绍了大幅度提高基于抽样动力学计划者的性能的方法。关键组件是首个已知的完整,确切的转向方法,该方法可为同步双积分器的向量提供任何状态之间的时间优势轨迹。该方法以三种方式应用:1)生成迅速解决两点边界值问题的RRT边缘,2)产生A(Quasi)度量,以在RRT中更准确地voronoi偏置,而3)以迭代的时间优化给定的无碰撞轨迹。对具有多达2000个维度的状态空间进行实验,从而改善了使用普通指标和恒定控制的计算轨迹和数量级计算时间改进的顺序。

This paper presents methods for dramatically improving the performance of sampling-based kinodynamic planners. The key component is the first-known complete, exact steering method that produces a time-optimal trajectory between any states for a vector of synchronized double integrators. This method is applied in three ways: 1) to generate RRT edges that quickly solve the two-point boundary-value problems, 2) to produce a (quasi)metric for more accurate Voronoi bias in RRTs, and 3) to iteratively time-optimize a given collision-free trajectory. Experiments are performed for state spaces with up to 2000 dimensions, resulting in improved computed trajectories and orders of magnitude computation time improvements over using ordinary metrics and constant controls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源