论文标题

纠缠二分高斯国家:一个简单的标准及其几何解释

Entanglement of Bipartite Gaussian States: a Simple Criterion and its Geometric Interpretation

论文作者

de Gosson, Maurice

论文摘要

Werner和Wolf在Phys中已证明。莱特牧师。 86(16)(2001)一个非常优雅的必要和足够条件,可用于可分离的玻体连续可变二分高斯混合量子状态。但是,这种情况在实践中很难实施。在本字母中,我们提出了一个更简单的条件,该条件仅涉及在所考虑的国家的协方差矩阵的威廉姆森对角度中计算符号矩阵。在先前的工作中证明,我们构造中的主要工具是,智慧变换仅在符号或反式线性变换下是协方差。我们还根据“量子斑点”的正交投影对我们的状况进行了几何解释。

Werner and Wolf have proven in Phys. Rev. Lett. 86(16) (2001) a very elegant necessary and sufficient condition for a bosonic continuous variable bipartite Gaussian mixed quantum state to be separable. This condition is, however, difficult to implement in practice. In the present Letter, we propose a simpler condition which only involves the calculation of the symplectic matrix in the Williamson diagonalization of the covariance matrix of the state under consideration. The main tool in our construction is the observation, proved in previous work, that the Wigner transform is covariant only under symplectic or antisymplectic linear transformations. We also give a geometric interpretation of our condition in terms of the orthogonal projections of "quantum blobs"..

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源