论文标题

解剖上约束的CT图像翻译,用于异质血管分割

Anatomically constrained CT image translation for heterogeneous blood vessel segmentation

论文作者

La Barbera, Giammarco, Boussaid, Haithem, Maso, Francesco, Sarnacki, Sabine, Rouet, Laurence, Gori, Pietro, Bloch, Isabelle

论文摘要

由于对比度扩散的变异性,因此在对比增强CT(CECT)图像中的血管等解剖结构(CECT)图像可能具有挑战性。 CECT和无对比度(CT)CT图像的联合使用可以改善分割性能,但以双辐射暴露为代价。为了限制辐射剂量,可以使用生成模型来综合一种模态,而不是获取它。 Cyclean方法最近引起了特别的关注,因为它减轻了难以获得的配对数据的需求。尽管文献中表现出了出色的表现,但在处理具有不同视野的未配对数据集的切片产生的切片时仍存在限制。在这种情况下,我们提出了Cyclegan的扩展,以产生具有良好结构一致性的高忠诚图像。我们通过调整自我监督的身体回归剂来利用解剖学约束和自动兴趣选择区域。这些约束会实现解剖一致性,并允许将解剖学的输入图像馈送到算法。结果显示,与现状方法相比,在CECT和CT图像之间的翻译任务(反之亦然),与先进方法相比,具有定性和定量改进。

Anatomical structures such as blood vessels in contrast-enhanced CT (ceCT) images can be challenging to segment due to the variability in contrast medium diffusion. The combined use of ceCT and contrast-free (CT) CT images can improve the segmentation performances, but at the cost of a double radiation exposure. To limit the radiation dose, generative models could be used to synthesize one modality, instead of acquiring it. The CycleGAN approach has recently attracted particular attention because it alleviates the need for paired data that are difficult to obtain. Despite the great performances demonstrated in the literature, limitations still remain when dealing with 3D volumes generated slice by slice from unpaired datasets with different fields of view. We present an extension of CycleGAN to generate high fidelity images, with good structural consistency, in this context. We leverage anatomical constraints and automatic region of interest selection by adapting the Self-Supervised Body Regressor. These constraints enforce anatomical consistency and allow feeding anatomically-paired input images to the algorithm. Results show qualitative and quantitative improvements, compared to stateof-the-art methods, on the translation task between ceCT and CT images (and vice versa).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源