论文标题

多个实例学习,用于检测顺序真实数据集的异常

Multiple Instance Learning for Detecting Anomalies over Sequential Real-World Datasets

论文作者

Kamranfar, Parastoo, Lattanzi, David, Shehu, Amarda, Barbará, Daniel

论文摘要

在现实世界数据集上检测异常仍然是一项具有挑战性的任务。数据注释是一个密集的人工问题,尤其是在顺序数据集中,在序列数据集中,异常的开始和结束时间尚不清楚。结果,从顺序实际过程中收集的数据可能在很大程度上是未标记的,也可以包含不准确的标签。这些特征挑战了基于监督学习的异常检测技术的应用。相比之下,多个实例学习(MIL)在培训数据集中对标签的不完整知识的问题有效,这主要是由于袋子的概念。虽然在很大程度上杠杆化的异常检测效果不足,但MIL为现实世界数据集提供了一种吸引人的表述,这是本文的主要贡献。在本文中,我们提出了基于该框架的基于MIL的配方和该框架的各种算法实例,该框架基于不同的设计决策,用于该框架的关键组成部分。我们评估了四个数据集上产生的算法,这些算法沿不同方式捕获了不同的物理过程。实验评估提出了几个观察结果。基于MIL的配方在易于中度数据集中学习的表现不佳,并且在更具挑战性的数据集上的单态学习胜过。总而言之,结果表明,该框架在不同的现实应用程序域所产生的不同数据集上概括了。

Detecting anomalies over real-world datasets remains a challenging task. Data annotation is an intensive human labor problem, particularly in sequential datasets, where the start and end time of anomalies are not known. As a result, data collected from sequential real-world processes can be largely unlabeled or contain inaccurate labels. These characteristics challenge the application of anomaly detection techniques based on supervised learning. In contrast, Multiple Instance Learning (MIL) has been shown effective on problems with incomplete knowledge of labels in the training dataset, mainly due to the notion of bags. While largely under-leveraged for anomaly detection, MIL provides an appealing formulation for anomaly detection over real-world datasets, and it is the primary contribution of this paper. In this paper, we propose an MIL-based formulation and various algorithmic instantiations of this framework based on different design decisions for key components of the framework. We evaluate the resulting algorithms over four datasets that capture different physical processes along different modalities. The experimental evaluation draws out several observations. The MIL-based formulation performs no worse than single instance learning on easy to moderate datasets and outperforms single-instance learning on more challenging datasets. Altogether, the results show that the framework generalizes well over diverse datasets resulting from different real-world application domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源