论文标题
没有激光的相锁光子电子相互作用
Phase-locked photon-electron interaction without a laser
论文作者
论文摘要
电子显微镜中的超快电子光谱通常需要超快激光设置。来自工程电子源的光发射用于生成脉冲电子,与在指定的时间延迟下由超快激光脉冲激发的样品相互作用。因此,开发超快电子显微镜需要剥削外在激光激发和复杂的同步方案。在这里,我们提出了一种基于阴极发光光谱的反向方法,以在电子显微镜中引入内部辐射源。我们的方法基于电子束与电子驱动光子源(EDPHS)和研究样品的顺序相互作用。电子显微镜中的电子驱动的光子源会产生相锁的光子,这些光子与Swift Electron的近场分布相互一致。由于它们的不同速度,可以通过更改EDPHS和样品之间的距离来更改光子和电子之间的延迟。我们通过与EDPHS和WSE2薄片的组合系统进行干涉测量法来证明来自EDPHS和样品的辐射之间的相互一致性。我们主张EDPHS和样品辐射的相互频率和动量依赖性相关性,并通过实验确定高达27%的相互连贯性程度。这种相互的连贯性使我们能够对电子显微镜执行光谱干涉法。我们的方法具有简单,紧凑且使用连续电子束运行的优点。它将打开量子材料,单光子系统和具有纳米分辨率的连贯的激子 - 极光核样品的局部电子相关光谱的门。
Ultrafast electron-photon spectroscopy in electron microscopes commonly requires ultrafast laser setups. Photoemission from an engineered electron source is used to generate pulsed electrons, interacting with a sample that is excited by the ultrafast laser pulse at a specified time delay. Thus, developing an ultrafast electron microscope demands the exploitation of extrinsic laser excitations and complex synchronization schemes. Here, we present an inverse approach based on cathodoluminescence spectroscopy to introduce internal radiation sources in an electron microscope. Our method is based on a sequential interaction of the electron beam with an electron-driven photon source (EDPHS) and the investigated sample. An electron-driven photon source in an electron microscope generates phase-locked photons that are mutually coherent with the near-field distribution of the swift electron. Due to their different velocities, one can readily change the delay between the photons and electrons arriving at the sample by changing the distance between the EDPHS and the sample. We demonstrate the mutual coherence between the radiations from the EDPHS and the sample by performing interferometry with a combined system of an EDPHS and a WSe2 flake. We assert the mutual frequency and momentum-dependent correlation of the EDPHS and sample radiation, and determine experimentally the degree of mutual coherence of up to 27%. This level of mutual coherence allows us to perform spectral interferometry with an electron microscope. Our method has the advantage of being simple, compact and operating with continuous electron beams. It will open the door to local electron-photon correlation spectroscopy of quantum materials, single photon systems, and coherent exciton-polaritonic samples with nanometric resolution.