论文标题

由外科手术计划的颅面骨运动驱动的基于深度学习的面部外观模拟

Deep Learning-based Facial Appearance Simulation Driven by Surgically Planned Craniomaxillofacial Bony Movement

论文作者

Fang, Xi, Kim, Daeseung, Xu, Xuanang, Kuang, Tianshu, Deng, Hannah H., Barber, Joshua C., Lampen, Nathan, Gateno, Jaime, Liebschner, Michael A. K., Xia, James J., Yan, Pingkun

论文摘要

在骨运动后模拟面部外观变化是针对颌骨畸形患者进行矫正手术计划的关键步骤。常规的基于生物力学的方法,例如有限元方法(FEM)是劳动密集型且计算效率低下的。由于其高计算效率和强大的建模能力,基于深度学习的方法可以是有希望的替代方法。然而,现有的基于深度学习的方法忽略了面部软组织和骨段之间的物理对应关系,因此与FEM相比,精度明显较小。在这项工作中,我们提出了一个细心的对应关系辅助运动转化网络(ACMT-NET),以通过将骨运动转换为通过点对点的细心对应矩阵来估计面部外观。与最先进的基于FEM的方法相比,对颌骨畸形患者的实验结果表明,我们提出的方法可以实现可比的面部变化预测准确性,并显着提高了计算效率。

Simulating facial appearance change following bony movement is a critical step in orthognathic surgical planning for patients with jaw deformities. Conventional biomechanics-based methods such as the finite-element method (FEM) are labor intensive and computationally inefficient. Deep learning-based approaches can be promising alternatives due to their high computational efficiency and strong modeling capability. However, the existing deep learning-based method ignores the physical correspondence between facial soft tissue and bony segments and thus is significantly less accurate compared to FEM. In this work, we propose an Attentive Correspondence assisted Movement Transformation network (ACMT-Net) to estimate the facial appearance by transforming the bony movement to facial soft tissue through a point-to-point attentive correspondence matrix. Experimental results on patients with jaw deformity show that our proposed method can achieve comparable facial change prediction accuracy compared with the state-of-the-art FEM-based approach with significantly improved computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源