论文标题

超音速三元二氧化碳湍流通道流的建模和模拟

Modeling and simulation in supersonic three-temperature carbon dioxide turbulent channel flow

论文作者

Cao, Guiyu, Shi, Yipeng, Xu, Kun, Chen, Shiyi

论文摘要

本文开创了超音速三温二氧化碳(CO2)湍流流动中的直接数值模拟(DNS)和物理分析。 CO2是一种线性和对称的三局分子,在室温下,由平移,旋转和振动模式之间的相互作用引起的热非平衡效应。因此,解决了CO2的旋转和振动模式。二氧化碳的热非平衡效应已在扩展的三个温度BGK型模型中建模,并具有校准的翻译,旋转和振动弛豫时间。为了准确,稳健地求解扩展的BGK型方程,在建立良好的两阶段的四阶框架内提出了非平衡高准确气体运动方案。与一个温度的超音速湍流流动相比,超音速三元二氧化碳湍流扩大了壁的整体传热,并略微降低了整体摩擦力。整体密度和温度场受到很大的影响,而流向流速度最干燥的变化几乎没有变化。二氧化碳的热非平衡三元效应还抑制了归一化的根平方的密度和温度,归一化湍流强度和雷诺应激的峰值。二氧化碳的振动模式的行为与旋转和翻译模式的行为完全不同。与振动温度场相比,旋转温度场与平移温度场具有更高的相似性,尤其是在温度振幅中。当前的热非平衡模型,超临界DNS和超音速CO2湍流中的物理分析可以作为可压缩二氧化碳湍流的长期适用性的基准。

This paper pioneers the direct numerical simulation (DNS) and physical analysis in supersonic three-temperature carbon dioxide (CO2) turbulent channel flow. CO2 is a linear and symmetric triatomic molecular, with the thermal non-equilibrium three-temperature effects arising from the interactions among translational, rotational and vibrational modes under room temperature. Thus, the rotational and vibrational modes of CO2 are addressed. Thermal non-equilibrium effect of CO2 has been modeled in an extended three-temperature BGK-type model, with the calibrated translational, rotational and vibrational relaxation time. To solve the extended BGK-type equation accurately and robustly, non-equilibrium high-accuracy gas-kinetic scheme is proposed within the well-established two-stage fourth-order framework. Compared with the one-temperature supersonic turbulent channel flow, supersonic three-temperature CO2 turbulence enlarges the ensemble heat transfer of the wall by approximate 20%, and slightly decreases the ensemble frictional force. The ensemble density and temperature fields are greatly affected, and there is little change in Van Driest transformation of streamwise velocity. The thermal non-equilibrium three-temperature effects of CO2 also suppress the peak of normalized root-mean-square of density and temperature, normalized turbulent intensities and Reynolds stress. The vibrational modes of CO2 behave quite differently with rotational and translational modes. Compared with the vibrational temperature fields, the rotational temperature fields have the higher similarity with translational temperature fields, especially in temperature amplitude. Current thermal non-equilibrium models, high-accuracy DNS and physical analysis in supersonic CO2 turbulent flow can act as the benchmark for the long-term applicability of compressible CO2 turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源