论文标题
数据驱动的胶质母细胞瘤的时空建模
Data-driven spatio-temporal modelling of glioblastoma
论文作者
论文摘要
数学肿瘤学为微观和宏观水平上的肿瘤生长提供了独特而宝贵的见解。这篇评论介绍了最新的建模技术,并着重于它们在理解胶质母细胞瘤(一种恶性脑癌形式)中的作用。对于每种方法,我们总结了范围,缺点和资产。我们强调了每种建模技术的潜在临床应用,并讨论了数学模型与用于告知它们的分子和成像数据之间的联系。通过这样做,我们旨在使用当前和新兴的计算工具为癌症研究人员提供理解,以理解肿瘤的进展。最后,通过提供不同建模技术的深入了解,我们还旨在帮助寻求建立和开发自己的模型和相关推理框架的研究人员。
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarise the scope, drawbacks, and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. Finally, by providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks.