论文标题

分析有条件独立性测试的条件随机化和置换方案

Analysis of Conditional Randomisation and Permutation schemes with application to conditional independence testing

论文作者

Łazęcka, Małgorzata, Kołodziejek, Bartosz, Mielniczuk, Jan

论文摘要

我们研究了两个重采样方案的属性:条件随机化和有条件的排列方案,这与测试离散随机变量的条件独立性$ x $和$ y $有关,给定随机变量$ z $。也就是说,我们研究了在这种情况下概率估计值的渐近行为,建立其渐近正态性并在渐近协方差矩阵之间进行排序。结果用于在这些设置中得出经验条件相互信息的渐近分布。出乎意料的是,尽管概率估计值的渐近分布有所不同,但两种情况的分布是重合的。我们还证明了条件置换方案的置换p值的有效性。上述结果证明了基于重新采样的P值和渐近性卡方分布的有条件独立测试的合理性,并具有调整后的自由度。我们在数值实验中显示,当样本量与三重量可能值的数量的比率超过0.5时,基于渐近分布的测试,对有限数量的排列进行调整,是条件置换量的确切测试的可行替代方法。此外,有条件置换方案的精确测试的性能之间没有显着差异,后者需要了解给定$ z $的$ x $的条件分布的知识,并且对于两种自适应测试来说都是相同的结论。

We study properties of two resampling scenarios: Conditional Randomisation and Conditional Permutation schemes, which are relevant for testing conditional independence of discrete random variables $X$ and $Y$ given a random variable $Z$. Namely, we investigate asymptotic behaviour of estimates of a vector of probabilities in such settings, establish their asymptotic normality and ordering between asymptotic covariance matrices. The results are used to derive asymptotic distributions of the empirical Conditional Mutual Information in those set-ups. Somewhat unexpectedly, the distributions coincide for the two scenarios, despite differences in the asymptotic distributions of the estimates of probabilities. We also prove validity of permutation p-values for the Conditional Permutation scheme. The above results justify consideration of conditional independence tests based on resampled p-values and on the asymptotic chi-square distribution with an adjusted number of degrees of freedom. We show in numerical experiments that when the ratio of the sample size to the number of possible values of the triple exceeds 0.5, the test based on the asymptotic distribution with the adjustment made on a limited number of permutations is a viable alternative to the exact test for both the Conditional Permutation and the Conditional Randomisation scenarios. Moreover, there is no significant difference between the performance of exact tests for Conditional Permutation and Randomisation schemes, the latter requiring knowledge of conditional distribution of $X$ given $Z$, and the same conclusion is true for both adaptive tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源