论文标题

通过有效的原子线辐射冷却,在暴力XUV环境中陆地N2-O2气氛的生存

Survival of Terrestrial N2-O2 Atmospheres in Violent XUV Environments through Efficient Atomic Line Radiative Cooling

论文作者

Nakayama, Akifumi, Ikoma, Masahiro, Terada, Naoki

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Atmospheres play a crucial role in planetary habitability. Around M dwarfs and young Sun-like stars, planets receiving the same insolation as the present-day Earth are exposed to intense stellar X-rays and extreme-ultraviolet (XUV) radiation. This study explores the fundamental question of whether the atmosphere of present-day Earth could survive in such harsh XUV environments. Previous theoretical studies suggest that stellar XUV irradiation is sufficiently intense to remove such atmospheres completely on short timescales. In this study, we develop a new upper-atmospheric model and re-examine the thermal and hydrodynamic responses of the thermospheric structure of an Earth-like N2-O2 atmosphere, on an Earth-mass planet, to an increase in the XUV irradiation. Our model includes the effects of radiative cooling via electronic transitions of atoms and ions, known as atomic line cooling, in addition to the processes accounted for by previous models. We demonstrate that atomic line cooling dominates over the hydrodynamic effect at XUV irradiation levels greater than several times the present level of the Earth. Consequentially, the atmosphere's structure is kept almost hydrostatic, and its escape remains sluggish even at XUV irradiation levels up to a thousand times that of the Earth at present. Our estimates for the Jeans escape rates of N2-O2 atmospheres suggest that these 1 bar atmospheres survive in early active phases of Sun-like stars. Even around active late M dwarfs, N2-O2 atmospheres could escape significant thermal loss on timescales of gigayears. These results give new insights into the habitability of terrestrial exoplanets and the Earth's climate history.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源