论文标题

部分可观测时空混沌系统的无模型预测

Spanning tree methods for sampling graph partitions

论文作者

Cannon, Sarah, Duchin, Moon, Randall, Dana, Rule, Parker

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the last decade, computational approaches to graph partitioning have made a major impact in the analysis of political redistricting, including in U.S. courts of law. Mathematically, a districting plan can be viewed as a balanced partition of a graph into connected subsets. Examining a large sample of valid alternative districting plans can help us recognize gerrymandering against an appropriate neutral baseline. One algorithm that is widely used to produce random samples of districting plans is a Markov chain called recombination (or ReCom), which repeatedly fuses adjacent districts, forms a spanning tree of their union, and splits that spanning tree with a balanced cut to form new districts. One drawback is that this chain's stationary distribution has no known closed form when there are three or more districts. In this paper, we modify ReCom slightly to give it a property called reversibility, resulting in a new Markov chain, RevReCom. This new chain converges to the simple, natural distribution that ReCom was originally designed to approximate: a plan's stationary probability is proportional to the product of the number of spanning trees of each district. This spanning tree score is a measure of district "compactness" (or shape) that is also aligned with notions of community structure from network science. After deriving the steady state formally, we present diagnostic evidence that the convergence is efficient enough for the method to be practically useful, giving high-quality samples for full-sized problems within several hours. In addition to the primary application of benchmarking of redistricting plans (i.e., describing a normal range for statistics), this chain can also be used to validate other methods that target the spanning tree distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源