论文标题
说唱:强大计划的风险意识预测
RAP: Risk-Aware Prediction for Robust Planning
论文作者
论文摘要
在互动场景中,强大的计划需要预测不确定的未来以做出风险意识的决策。不幸的是,由于长尾安全至关重要的事件,概率运动预测的有限采样近似通常会低估风险。即使有强大的计划者,这也可能导致过度自信和不安全的机器人行为。我们建议不要假设强大的计划者需要全面预测覆盖范围,而是提出预测自己的风险意识。我们介绍了一个新的预测目标,以学习对轨迹的风险偏分布,因此,在此偏见分布下,风险评估简化了预期的成本估算。这降低了在线计划中风险估计的样本复杂性,这是安全实时性能所需的。评估在教学仿真环境和现实世界数据集中结果表明了我们方法的有效性。代码和演示可用。
Robust planning in interactive scenarios requires predicting the uncertain future to make risk-aware decisions. Unfortunately, due to long-tail safety-critical events, the risk is often under-estimated by finite-sampling approximations of probabilistic motion forecasts. This can lead to overconfident and unsafe robot behavior, even with robust planners. Instead of assuming full prediction coverage that robust planners require, we propose to make prediction itself risk-aware. We introduce a new prediction objective to learn a risk-biased distribution over trajectories, so that risk evaluation simplifies to an expected cost estimation under this biased distribution. This reduces the sample complexity of the risk estimation during online planning, which is needed for safe real-time performance. Evaluation results in a didactic simulation environment and on a real-world dataset demonstrate the effectiveness of our approach. The code and a demo are available.