论文标题
夸克:用于分类任务的无梯度量子学习框架
Quark: A Gradient-Free Quantum Learning Framework for Classification Tasks
论文作者
论文摘要
随着更实用和可扩展的量子计算机的出现,人们非常关注在机器学习中实现量子至上。现有的量子ML方法(1)将经典模型嵌入到目标哈密顿量中以实现量子优化,或者(2)代表使用变异量子电路的量子模型,并应用基于经典的基于基于梯度的优化。前一种方法利用了量子优化的功能,但仅支持简单的ML模型,而后者则提供了模型设计的灵活性,但依赖于梯度计算,从而导致贫瘠的平稳(即梯度消失)和频繁的经典量子 - 量化相互作用。为了解决现有量子ML方法的局限性,我们引入了Quark,这是一种无梯度的量子学习框架,使用量子优化优化量子ML模型。夸克不依赖梯度计算,因此避免了贫瘠的高原和频繁的经典量子相互作用。此外,夸克可以比先前的量子ML方法支持更多的通用ML模型,并实现独立于数据集的优化复杂性。从理论上讲,我们证明夸克可以通过减少高度非凸问题的模型查询复杂性来胜过基于经典的方法。从经验上讲,对边缘检测和微小任务的评估表明,Quark可以支持复杂的ML模型,并显着减少发现这些任务近距离权重所需的测量数量。
As more practical and scalable quantum computers emerge, much attention has been focused on realizing quantum supremacy in machine learning. Existing quantum ML methods either (1) embed a classical model into a target Hamiltonian to enable quantum optimization or (2) represent a quantum model using variational quantum circuits and apply classical gradient-based optimization. The former method leverages the power of quantum optimization but only supports simple ML models, while the latter provides flexibility in model design but relies on gradient calculation, resulting in barren plateau (i.e., gradient vanishing) and frequent classical-quantum interactions. To address the limitations of existing quantum ML methods, we introduce Quark, a gradient-free quantum learning framework that optimizes quantum ML models using quantum optimization. Quark does not rely on gradient computation and therefore avoids barren plateau and frequent classical-quantum interactions. In addition, Quark can support more general ML models than prior quantum ML methods and achieves a dataset-size-independent optimization complexity. Theoretically, we prove that Quark can outperform classical gradient-based methods by reducing model query complexity for highly non-convex problems; empirically, evaluations on the Edge Detection and Tiny-MNIST tasks show that Quark can support complex ML models and significantly reduce the number of measurements needed for discovering near-optimal weights for these tasks.