论文标题
通过持久同源性指导的蒙特卡洛树搜索有效且坚固的非划理操作
Effective and Robust Non-Prehensile Manipulation via Persistent Homology Guided Monte-Carlo Tree Search
论文作者
论文摘要
在现实世界工作区中执行对象检索必须应对\ emph {不确定性}和\ emph {clutter}的挑战。一种选择是应用预先操作,在高度整理的情况下可以耗时。另一方面,非划算的动作,例如同时推动多个对象,可以帮助快速清除杂乱的工作空间并检索目标对象。但是,这种行动也可能导致不确定性增加,因为很难估计推动操作的结果。这项工作中提出的框架集成了拓扑工具和蒙特 - 卡洛树搜索(MCT),以实现有效而强大的推动对象检索。它采用持续的同源性来自动识别可管理的阻止对象的簇,而无需手动调整超参数。然后,MCT使用此信息来探索可行的动作以推动对象组,以最大程度地减少清除目标路径所需的操作数量。使用百特机器人进行的现实世界实验涉及驱动方面的一些噪音,表明所提出的框架在解决杂物中的杂物中的检索任务方面取得了更高的成功率。此外,它生产解决方案,很少有推动力改善整体执行时间。更重要的是,它足够强大,它允许一个人脱机地计划操作序列,然后在Baxter机器人上可靠地执行它们。
Performing object retrieval in real-world workspaces must tackle challenges including \emph{uncertainty} and \emph{clutter}. One option is to apply prehensile operations, which can be time consuming in highly-cluttered scenarios. On the other hand, non-prehensile actions, such as pushing simultaneously multiple objects, can help to quickly clear a cluttered workspace and retrieve a target object. Such actions, however, can also lead to increased uncertainty as it is difficult to estimate the outcome of pushing operations. The proposed framework in this work integrates topological tools and Monte-Carlo Tree Search (MCTS) to achieve effective and robust pushing for object retrieval. It employs persistent homology to automatically identify manageable clusters of blocking objects without the need for manually adjusting hyper-parameters. Then, MCTS uses this information to explore feasible actions to push groups of objects, aiming to minimize the number of operations needed to clear the path to the target. Real-world experiments using a Baxter robot, which involves some noise in actuation, show that the proposed framework achieves a higher success rate in solving retrieval tasks in dense clutter than alternatives. Moreover, it produces solutions with few pushing actions improving the overall execution time. More critically, it is robust enough that it allows one to plan the sequence of actions offline and then execute them reliably on a Baxter robot.