论文标题

结构化PCA中的贝叶斯最佳限制以及如何到达它们

Bayes-optimal limits in structured PCA, and how to reach them

论文作者

Barbier, Jean, Camilli, Francesco, Mondelli, Marco, Saenz, Manuel

论文摘要

测量噪声的统计依赖性如何影响高维的推断?为了回答这一点,我们研究了主成分分析(PCA)的范式尖刺矩阵模型,其中排名一的矩阵被添加剂噪声损坏。通过从低阶多项式正交矩阵集合中绘制噪声,我们超越了噪声条目的通常独立性假设。由此产生的噪声相关性使设置与应用程序相关,但在分析上具有挑战性。我们提供了该模型中贝叶斯最佳限制的第一个表征。如果尖峰是旋转不变的,我们表明标准光谱PCA是最佳的。但是,对于更一般的先验,PCA和现有的近似消息传递算法(AMP)都没有达到信息理论限制,我们使用统计力学的副本方法对此进行了计算。因此,我们提出了一个新的放大器,灵感来自自适应的thouless-therson-palmer方程,该理论饱和理论极限。该放大器带有严格的状态进化分析,跟踪其性能。尽管我们专注于特定的噪声分布,但我们的方法可以将其推广到一类宽类矩阵集合,而涉及更多表达式。最后,尽管对旋转不变的噪声似乎有很强的假设,但我们的理论从经验上预测了真实数据上的算法性能,指出了显着的普遍性属性。

How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide the first characterization of the Bayes-optimal limits of inference in this model. If the spike is rotation-invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical mechanics. We thus propose a novel AMP, inspired by the theory of Adaptive Thouless-Anderson-Palmer equations, which saturates the theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at remarkable universality properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源