论文标题
在风险预测中反事实公平性的交叉框架
An intersectional framework for counterfactual fairness in risk prediction
论文作者
论文摘要
随着健康数据的越来越多的可用性,数据驱动模型的兴起,以告知决策和政策。这些模型有可能使患者和医疗保健提供者受益,但也可能加剧健康不平等。现有的“算法公平”方法用于衡量和纠正模型偏见的方法没有以两种关键方式降低卫生政策所需的内容。首先,方法通常集中在可能发生歧视的单个分组上,而不是考虑多个相交组。其次,在临床应用中,通常使用风险预测来指导治疗,从而产生不同的统计问题,使大多数现有技术无效。我们提出了基于“反事实公平”中现有技术以应对这两个挑战的现有技术的摘要不公平指标。我们还为我们的指标开发了一个完整的估计和推理工具框架,包括不公平值(“ U-Value”),用于确定不公平的相对极端,以及使用标准自举的替代方案的标准错误和置信区间。我们证明了我们的框架在中西部主要卫生系统中部署的Covid-19风险预测模型中的应用。
Along with the increasing availability of health data has come the rise of data-driven models to inform decision-making and policy. These models have the potential to benefit both patients and health care providers but can also exacerbate health inequities. Existing "algorithmic fairness" methods for measuring and correcting model bias fall short of what is needed for health policy in two key ways. First, methods typically focus on a single grouping along which discrimination may occur rather than considering multiple, intersecting groups. Second, in clinical applications, risk prediction is typically used to guide treatment, creating distinct statistical issues that invalidate most existing techniques. We present summary unfairness metrics that build on existing techniques in "counterfactual fairness" to address both challenges. We also develop a complete framework of estimation and inference tools for our metrics, including the unfairness value ("u-value"), used to determine the relative extremity of unfairness, and standard errors and confidence intervals employing an alternative to the standard bootstrap. We demonstrate application of our framework to a COVID-19 risk prediction model deployed in a major Midwestern health system.