论文标题
$ \ mathbb {f} _p $:逆火山问题的普通同学图
Ordinary isogeny graphs over $\mathbb{F}_p$: the inverse volcano problem
论文作者
论文摘要
我们给出了与$ \ Mathbb {f} _p $相关的普通椭圆曲线相关的$ \ ell $ - 发育图的详细介绍。然后,我们专注于以下逆问题:给定抽象的火山$ V $,是否总是存在Primes $ \ ell,p \ in \ Mathbb {n} $,使得普通的$ \ ell $ $ $ - 发育图上的$ \ mathbb {f} _p $ contectement $ v $ v $作为连接组件?我们为这个问题提供了肯定的答案。
We give a detailed presentation of $\ell$-isogeny graphs associated with ordinary elliptic curves defined over $\mathbb{F}_p$. We then focus on the following inverse problem: given an abstract volcano $V$, do there always exist primes $\ell, p \in \mathbb{N}$ such that the ordinary $\ell$-isogeny graph over $\mathbb{F}_p$ contains $V$ as a connected component? We provide an affirmative answer to this question.