论文标题

关于域适应对脑电图数据的数据归一化的影响

On The Effects Of Data Normalisation For Domain Adaptation On EEG Data

论文作者

Apicella, Andrea, Isgrò, Francesco, Pollastro, Andrea, Prevete, Roberto

论文摘要

在机器学习(ML)文献中,一个众所周知的问题是数据集偏移问题,与ML标准假设不同,培训和测试集中的数据可以遵循不同的概率分布,从而使ML系统降低了通用性能。在脑部计算机界面(BCI)上下文中,这种问题经常使用,在脑部计算机界面(BCI)中经常使用脑电图(EEG)。实际上,随着时间的流逝和不同受试者之间的高度非平稳性,EEG信号是高度非平稳的。为了克服这个问题,一些提出的解决方案基于最近的转移学习方法,例如域适应(DA)。但是,在某些情况下,改进的实际原因仍然模棱两可。本文着重于数据归一化的影响或与DA方法一起应用的标准化策略。特别是,使用\ textIt {seed},\ textit {deap}和\ textit {BCI竞争IV 2A} EEG数据集,我们实验评估了使用和没有多种知名DA方法应用的不同规范化策略的影响,以比较获得的表演。它导致选择归一化策略的选择在DA情况下的分类器表现中起关键作用,有趣的是,在某些情况下,仅使用适当的归一化模式的使用胜过DA技术。

In the Machine Learning (ML) literature, a well-known problem is the Dataset Shift problem where, differently from the ML standard hypothesis, the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalisation performances. This problem is intensely felt in the Brain-Computer Interface (BCI) context, where bio-signals as Electroencephalographic (EEG) are often used. In fact, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several proposed solutions are based on recent transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalisation, or standardisation strategies applied together with DA methods. In particular, using \textit{SEED}, \textit{DEAP}, and \textit{BCI Competition IV 2a} EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods, comparing the obtained performances. It results that the choice of the normalisation strategy plays a key role on the classifier performances in DA scenarios, and interestingly, in several cases, the use of only an appropriate normalisation schema outperforms the DA technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源