论文标题
基于节点统计的图形收集关系
Nodal statistics-based equivalence relation for graph collections
论文作者
论文摘要
节点角色在复杂网络中的解释性非常困难,但在社会科学,神经科学或计算机科学等不同应用领域中至关重要。在使用给定的结构特性揭示网络中特定节点的集线器定量方面已做出了许多努力。但是,在几个应用程序中,当有多个网络实例可用并且几个结构属性似乎是相关的时,识别节点角色仍然在很大程度上没有探索。受节点自动相等关系的启发,我们定义了与任何与淋巴结统计集合(即节点集合上的任何函数)相关的图形节点上的等价关系。这使我们能够定义新的图表全局度量:功率系数和正交性评分,以评估给定节点统计收集的简约和异质性。此外,我们引入了一种基于结构模式的新方法,以比较具有相同顶点的图形。此方法为节点分配一个值,以确定其在图家族中的作用独特性。我们方法的广泛数值结果是在生成图模型和有关人脑功能连接性的真实数据上进行的。淋巴结统计数据的差异被证明取决于基础图结构。结合两个不同的淋巴结统计数据的生成模型与真实网络之间的比较揭示了人脑功能连通性与全球和节点级别的差异的复杂性。我们的方法使用200个健康对照网络的连通性网络,计算整个人群之间的高对应得分,以检测同型,并最终量化昏迷患者和健康对照之间的差异。
Node role explainability in complex networks is very difficult, yet is crucial in different application domains such as social science, neurosciences or computer science. Many efforts have been made on the quantification of hubs revealing particular nodes in a network using a given structural property. Yet, in several applications, when multiple instances of networks are available and several structural properties appear to be relevant, the identification of node roles remains largely unexplored. Inspired by the node automorphically equivalence relation, we define an equivalence relation on graph nodes associated with any collection of nodal statistics (i.e. any functions on the node-set). This allows us to define new graph global measures: the power coefficient, and the orthogonality score to evaluate the parsimony and heterogeneity of a given nodal statistics collection. In addition, we introduce a new method based on structural patterns to compare graphs that have the same vertices set. This method assigns a value to a node to determine its role distinctiveness in a graph family. Extensive numerical results of our method are conducted on both generative graph models and real data concerning human brain functional connectivity. The differences in nodal statistics are shown to be dependent on the underlying graph structure. Comparisons between generative models and real networks combining two different nodal statistics reveal the complexity of human brain functional connectivity with differences at both global and nodal levels. Using a group of 200 healthy controls connectivity networks, our method computes high correspondence scores among the whole population, to detect homotopy, and finally quantify differences between comatose patients and healthy controls.