论文标题

上下文的长尾巴:它存在和重要吗?

The Long Tail of Context: Does it Exist and Matter?

论文作者

Bauman, Konstantin, Vasilev, Alexey, Tuzhilin, Alexander

论文摘要

在过去的二十年中,上下文一直是推荐系统中的重要主题。上下文的标准表示方法假设上下文变量及其结构在应用程序中是已知的。大多数先前的汽车论文遵循代表性方法手动选择并仅考虑了一个应用程序中的几个关键上下文变量,例如时间,位置和公司的公司。这项先前的工作表明,当在众多应用程序中部署了各种基于汽车的方法时,这表明了大量建议性能改善。但是,某些推荐系统应用程序涉及更大,更广泛的上下文,并且在这种情况下,手动识别和捕获一些上下文变量是不够的。在本文中,我们研究了涉及各种不同类型上下文的``上下文富裕''应用程序。我们证明,仅支持一些最重要的上下文变量,尽管有用,但不够。在我们的研究中,我们专注于在客户服务代表发起的对话中向商业客户推荐各种银行产品的应用程序。在此应用程序中,我们设法确定了200多种类型的上下文变量。通过其重要性对这些变量进行排序形成了上下文的长尾巴(LTC)。在本文中,我们从经验上证明了LTC很重要,并且使用了从长尾部开始的所有这些上下文变量,可以显着改善建议性能。

Context has been an important topic in recommender systems over the past two decades. A standard representational approach to context assumes that contextual variables and their structures are known in an application. Most of the prior CARS papers following representational approach manually selected and considered only a few crucial contextual variables in an application, such as time, location, and company of a person. This prior work demonstrated significant recommendation performance improvements when various CARS-based methods have been deployed in numerous applications. However, some recommender systems applications deal with a much bigger and broader types of contexts, and manually identifying and capturing a few contextual variables is not sufficient in such cases. In this paper, we study such ``context-rich'' applications dealing with a large variety of different types of contexts. We demonstrate that supporting only a few most important contextual variables, although useful, is not sufficient. In our study, we focus on the application that recommends various banking products to commercial customers within the context of dialogues initiated by customer service representatives. In this application, we managed to identify over two hundred types of contextual variables. Sorting those variables by their importance forms the Long Tail of Context (LTC). In this paper, we empirically demonstrate that LTC matters and using all these contextual variables from the Long Tail leads to significant improvements in recommendation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源