论文标题

浮标Weyl半准相中的光照式高阶拓扑狄拉克半学

Floquet Weyl semimetal phases in light-irradiated higher-order topological Dirac semimetals

论文作者

Wang, Zi-Ming, Wang, Rui, Sun, Jin-Hua, Chen, Ting-Yong, Xu, Dong-Hui

论文摘要

Floquet Engineering是通过定期驱动器来量身定制系统的概念,越来越多地利用了物质的设计和操纵拓扑阶段。在这项工作中,我们通过施加圆形极化光线来研究与$ K $依赖的量化四极矩时相关的高阶高阶拓扑半学分。未发达的狄拉克半学具有无间隙的高阶铰链费米(Fermi Arc)状态,这是DIRAC节点高阶拓扑的结果。带有混合阶拓扑的Floquet Weyl半学相,其特征是$ K $依赖性的量化四极矩和$ K $依赖的Chern号,在照明圆形极化光线时会出现。这种浮子Weyl半法子都支持铰链弧菌状态和拓扑表面费米电弧状态。此外,还讨论了高阶拓扑狄拉克半米中的Weyl半含量的Floquet Weyl半法。考虑到最近提出了许多高阶拓扑半学材料,我们的发现很快就可以进行测试。

Floquet engineering, the concept of tailoring a system by a periodic drive, is increasingly exploited to design and manipulate topological phases of matter. In this work, we study periodically driven higher-order topological Dirac semimetals associated with a $k$-dependent quantized quadrupole moment by applying circularly polarized light. The undriven Dirac semimetals feature gapless higher-order hinge Fermi arc states which are the consequence of the higher-order topology of the Dirac nodes. Floquet Weyl semimetal phases with hybrid-order topology, characterized by both a $k$-dependent quantized quadrupole moment and a $k$-dependent Chern number, emerge when illumining circularly polarized light. Such Floquet Weyl semimetals support both hinge Fermi arc states and topological surface Fermi arc states. In addition, Floquet Weyl semimetals with tilted Weyl cones in higher-order topological Dirac semimetals are also discussed. Considering numerous higher-order topological Dirac semimetal materials were recently proposed, our findings can be testable soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源