论文标题

图像引导的质子闪光放射疗法的深度学习快速图像生成

Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy

论文作者

Chang, Chih-Wei, Lei, Yang, Wang, Tonghe, Tian, Sibo, Roper, Justin, Lin, Liyong, Bradley, Jeffrey, Liu, Tian, Zhou, Jun, Yang, Xiaofeng

论文摘要

质子闪光治疗利用超高剂量速率辐射来增强处于危险的器官的情况,而不会损害肿瘤控制概率。为了准备将高剂量输送到目标,我们旨在开发一个基于深度学习的图像指南框架,以实现快速体积图像重建,以便在FLSAH光束传递之前准确目标定位。提出的框架包括四个模块,包括正交KV X射线投影采集,基于DL的体积图像产生,图像质量分析和水等效厚度评估。我们使用具有不同源角度的四个KV投影对研究了体积图像重建。从机构数据库中鉴定出30例肺患者,每个患者包含一个具有十个呼吸阶段的四维计算机断层扫描数据集。回顾性患者研究表明,该提出的框架可以重建患者体积解剖结构,包括正交X射线预测有风险的肿瘤和器官。考虑到所有评估指标,源角度为135度和225度的KV投影产生了最佳的体积图像。已提出的框架已被证明可以重建来自两个正交X射线投影的精确病变位置的体积图像。嵌入式湿模块可用于检测潜在的质子束特异性患者解剖学变异。该框架可以产生快速的体积图像产生,并可以潜在地指导质子闪光治疗的治疗输送系统。

Proton FLASH therapy leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. To prepare for the delivery of high doses to targets, we aim to develop a deep learning-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization before FLSAH beam delivery. The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and water equivalent thickness evaluation. We investigated volumetric image reconstruction using four kV projection pairs with different source angles. Thirty lung patients were identified from the institutional database, and each patient contains a four-dimensional computed tomography dataset with ten respiratory phases. The retrospective patient study indicated that the proposed framework could reconstruct patient volumetric anatomy, including tumors and organs at risk from orthogonal x-ray projections. Considering all evaluation metrics, the kV projections with source angles of 135 and 225 degrees yielded the optimal volumetric images. The proposed framework has been demonstrated to reconstruct volumetric images with accurate lesion locations from two orthogonal x-ray projections. The embedded WET module can be used to detect potential proton beam-specific patient anatomy variations. The framework can deliver fast volumetric image generation and can potentially guide treatment delivery systems for proton FLASH therapy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源