论文标题

合作多代理的深入强化学习,可通过多UAV控制可靠和节能移动访问

Cooperative Multi-Agent Deep Reinforcement Learning for Reliable and Energy-Efficient Mobile Access via Multi-UAV Control

论文作者

Park, Chanyoung, Park, Soohyun, Jung, Soyi, Cordeiro, Carlos, Kim, Joongheon

论文摘要

本文介绍了一种新型的多代理深钢筋学习(MADRL)的定位算法,用于多种无人机(UAVS)协作(即无人机作为移动基站)。该算法的主要目的是建立可靠的移动访问网络,用于蜂窝车辆到所有(C-V2X)通信,从而有助于实现高质量的智能运输系统(ITS)。可靠的移动访问服务可以通过以下两种方式来实现,即i)节能无人机操作和ii)可靠的无线通信服务。对于节能无人机操作,我们提出的MADRL算法的奖励包含无人机消耗模型的功能,以实现有效的操作。此外,对于可靠的无线通信服务,将单个用户的服务质量(QoS)要求视为奖励的一部分,而60GHz MMWave无线电则用于移动访问。本文考虑了60GHz MMWave访问i)i)多GBPS高速通信的超宽带宽度和ii)ii)高方向通信用于空间重复使用,这显然对密集部署的用户有益。最后,本文进行了基于MADRL的算法的全面和数据密集型性能评估。这些评估的结果表明,所提出的算法的表现优于其他现有算法。

This paper addresses a novel multi-agent deep reinforcement learning (MADRL)-based positioning algorithm for multiple unmanned aerial vehicles (UAVs) collaboration (i.e., UAVs work as mobile base stations). The primary objective of the proposed algorithm is to establish dependable mobile access networks for cellular vehicle-to-everything (C-V2X) communication, thereby facilitating the realization of high-quality intelligent transportation systems (ITS). The reliable mobile access services can be achieved in following two ways, i.e., i) energy-efficient UAV operation and ii) reliable wireless communication services. For energy-efficient UAV operation, the reward of our proposed MADRL algorithm contains the features for UAV energy consumption models in order to realize efficient operations. Furthermore, for reliable wireless communication services, the quality of service (QoS) requirements of individual users are considered as a part of rewards and 60GHz mmWave radio is used for mobile access. This paper considers the 60GHz mmWave access for utilizing the benefits of i) ultra-wide-bandwidth for multi-Gbps high-speed communications and ii) high-directional communications for spatial reuse that is obviously good for densely deployed users. Lastly, the comprehensive and data-intensive performance evaluation of the proposed MADRL-based algorithm for multi-UAV positioning is conducted in this paper. The results of these evaluations demonstrate that the proposed algorithm outperforms other existing algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源