论文标题
较高的时空和渐近非平台的挠度
Deflection in higher dimensional spacetime and asymptotically non-flat spacetimes
论文作者
论文摘要
在这项工作中,我们研究了Einstein-Maxwell SpaceTime,Born-Infeld Gravity和带电的Ellis-Bronnikov(CEB)时空在弱场限制中的偏移中,我们研究了NULL和及时信号的偏转。发现挠度角以影响参数的(准)串联形式,并自动考虑源和观察者的有限距离效应。该方法还适用于具有任意维度的CEB时空中的挠度。可以表明,对于领先的非平凡订单,大约$ n $维空间中的挠度是$ \ mathcal {o}(m/b)^{n-3} $的顺序。然后,我们将该方法扩展到渐近非平局的空间,并在非线性电动力标量理论中研究了偏转。在这种渐近的非平台上,在微不足道的空间中的偏转角已被发现不再是$π$。在所有这些情况下,扰动挠度角均显示出非常吻合的数值结果。分析了一些非平凡时空参数以及信号速度对偏转角的影响。
Using a perturbative technique, in this work we study the deflection of null and timelike signals in the extended Einstein-Maxwell spacetime, the Born-Infeld gravity and the charged Ellis-Bronnikov (CEB) spacetime in the weak field limit. The deflection angles are found to take a (quasi-)series form of the impact parameter, and automatically takes into account the finite distance effect of the source and observer. The method is also applied to find the deflections in CEB spacetime with arbitrary dimension. It's shown that to the leading non-trivial order, the deflection in some $n$-dimensional spacetimes is of the order $\mathcal{O}(M/b)^{n-3}$. We then extended the method to spacetimes that are asymptotically non-flat and studied the deflection in a nonlinear electrodynamical scalar theory. The deflection angle in such asymptotically non-flat spacetimes at the trivial order is found to be not $π$ anymore. In all these cases, the perturbative deflection angles are shown to agree with numerical results extremely well. The effects of some nontrivial spacetime parameters as well as the signal velocity on the deflection angles are analyzed.