论文标题
通过AI预测AI的未来:在成倍增长的知识网络中,高质量的链接预测
Predicting the Future of AI with AI: High-quality link prediction in an exponentially growing knowledge network
论文作者
论文摘要
一种可以通过从科学文献中获得见解来暗示新的个性化研究方向和思想的工具可以显着加速科学的进步。可能从这种方法中受益的领域是人工智能(AI)研究,在过去的几年中,科学出版物的数量一直在成倍增长,这使得人类研究人员的挑战是跟踪进步。在这里,我们使用AI技术来预测AI本身的未来研究方向。我们基于现实世界数据开发了一种新的基于图的基准测试,即Science4cast Benchmark,旨在预测AI不断发展的语义网络的未来状态。为此,我们使用了100,000多个研究论文,并建立了一个具有64,000多个概念节点的知识网络。然后,我们提出了十种解决此任务的多种方法,从纯统计到纯学习方法。令人惊讶的是,最强大的方法使用精心策划的网络功能集,而不是端到端的AI方法。它表明在没有人类知识的情况下,可以释放出纯粹的ML方法的巨大潜力。最终,对新的未来研究方向的更好预测将是更先进的研究建议工具的关键组成部分。
A tool that could suggest new personalized research directions and ideas by taking insights from the scientific literature could significantly accelerate the progress of science. A field that might benefit from such an approach is artificial intelligence (AI) research, where the number of scientific publications has been growing exponentially over the last years, making it challenging for human researchers to keep track of the progress. Here, we use AI techniques to predict the future research directions of AI itself. We develop a new graph-based benchmark based on real-world data -- the Science4Cast benchmark, which aims to predict the future state of an evolving semantic network of AI. For that, we use more than 100,000 research papers and build up a knowledge network with more than 64,000 concept nodes. We then present ten diverse methods to tackle this task, ranging from pure statistical to pure learning methods. Surprisingly, the most powerful methods use a carefully curated set of network features, rather than an end-to-end AI approach. It indicates a great potential that can be unleashed for purely ML approaches without human knowledge. Ultimately, better predictions of new future research directions will be a crucial component of more advanced research suggestion tools.