论文标题

任何Sasakian结构都通过嵌入到球体中近似

Any Sasakian structure is approximated by embeddings into spheres

论文作者

Loi, Andrea, Placini, Giovanni

论文摘要

我们表明,对于任何给定的$ q \ geq 0 $,封闭的歧管$ m $上的任何sasakian结构都近似于$ c^{q} $ - 由cr嵌入到加权的sasakian球体中的结构中。为了获得此结果,我们还通过Ross和Thomas在[$ C^0 $ -NORM中给出$ C^{Q} $近似的Provealtial引起的诱导性诱导的近似形式加强了OrbifoldKähler形式的近似值。

We show that, for any given $q\geq 0$, any Sasakian structure on a closed manifold $M$ is approximated in the $C^{q}$-norm by structures induced by CR embeddings into weighted Sasakian spheres. In order to obtain this result, we also strengthen the approximation of an orbifold Kähler form by projectively induced ones given by Ross and Thomas in [21] in the $C^0$-norm to a $C^{q}$-approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源