论文标题

完全变压器网络用于变更检测遥感图像

Fully Transformer Network for Change Detection of Remote Sensing Images

论文作者

Yan, Tianyu, Wan, Zifu, Zhang, Pingping

论文摘要

最近,随着深度学习的进步,遥感图像的变更检测(CD)取得了巨大的进步。但是,由于提取的视觉特征的表示能力有限,当前方法通常会提供不完整的CD区域和不规则的CD边界。为了缓解这些问题,在这项工作中,我们提出了一个名为“完全变压器网络”(FTN)的新型学习框架,用于遥感图像CD,从而改善了从全局视图中提取的特征提取,并以金字塔方式结合了多层视觉特征。更具体地说,所提出的框架首先利用了远程依赖性建模中变压器的优势。它可以帮助学习更多歧视性的全球级别功能并获得完整的CD区域。然后,我们引入了一个金字塔结构,以汇总变压器的多层视觉特征,以增强功能。用渐进注意模块(PAM)接枝的金字塔结构可以通过通道倾向来提高特征表示能力。最后,为了更好地训练框架,我们利用多个BoundareAware损失功能的深度监督学习。广泛的实验表明,我们提出的方法在四个公共CD基准上实现了新的最新性能。对于模型复制,源代码将在https://github.com/ai-zhpp/ftn上发布。

Recently, change detection (CD) of remote sensing images have achieved great progress with the advances of deep learning. However, current methods generally deliver incomplete CD regions and irregular CD boundaries due to the limited representation ability of the extracted visual features. To relieve these issues, in this work we propose a novel learning framework named Fully Transformer Network (FTN) for remote sensing image CD, which improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner. More specifically, the proposed framework first utilizes the advantages of Transformers in long-range dependency modeling. It can help to learn more discriminative global-level features and obtain complete CD regions. Then, we introduce a pyramid structure to aggregate multi-level visual features from Transformers for feature enhancement. The pyramid structure grafted with a Progressive Attention Module (PAM) can improve the feature representation ability with additional interdependencies through channel attentions. Finally, to better train the framework, we utilize the deeply-supervised learning with multiple boundaryaware loss functions. Extensive experiments demonstrate that our proposed method achieves a new state-of-the-art performance on four public CD benchmarks. For model reproduction, the source code is released at https://github.com/AI-Zhpp/FTN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源