论文标题
在高纵横比结构中对原子层沉积过程中的不完全保形进行建模
Modeling Incomplete Conformality during Atomic Layer Deposition in High Aspect Ratio Structures
论文作者
论文摘要
原子层沉积可以精确控制膜的厚度和形式。它是高纵横比结构(例如3D NAND内存)的关键推动因素,因为它的自限性行为比传统过程更高的保征性。但是,随着纵横比的增加,经常发生与完全保并的偏差,需要全面的建模以帮助开发新技术。为此,我们提出了一个在原子层沉积过程中存在不完全保并性的模型。该模型结合了基于Knudsen扩散和Langmuir动力学的现有方法。我们的模型通过(i)通过Bosanquet公式融合了气相扩散性以及在Yanguas-Gil和Elam首先提出的建模框架中的反应可逆性,以及(ii)在级别设定的模拟器中有效整合。该模型经过手动校准,以发布TMA的Al $ _2 $ o $ _3 $的原型原子层沉积的发布结果,而H $ _2 $ o在侧向高纵横比结构中。我们研究了h $ _2 $ o步的温度依赖性,从而提取了$ 0.178 \,\ mathrm {ev} $的激活能量,这与最近的实验一致。在TMA步骤中,我们观察到Bosanquet公式的精度提高,并以相同的参数集重现了多个独立的实验,这强调了模型参数有效地捕获了反应器条件。
Atomic layer deposition allows for precise control over film thickness and conformality. It is a critical enabler of high aspect ratio structures, such as 3D NAND memory, since its self-limiting behavior enables higher conformality than conventional processes. However, as the aspect ratio increases, deviations from complete conformality frequently occur, requiring comprehensive modeling to aid the development of novel technologies. To that end, we present a model for surface coverage during atomic layer deposition where incomplete conformality is present. This model combines existing approaches based on Knudsen diffusion and Langmuir kinetics. Our model expands the state-of-the art by (i) incorporating gas-phase diffusivity through the Bosanquet formula as well as reaction reversibility in the modeling framework first proposed by Yanguas-Gil and Elam, and (ii) being efficiently integrated within level-set topography simulators. The model is manually calibrated to published results of the prototypical atomic layer deposition of Al$_2$O$_3$ from TMA and H$_2$O in lateral high aspect ratio structures. We investigate the temperature dependence of the H$_2$O step, thus extracting an activation energy of $0.178\,\mathrm{eV}$ which is consistent with recent experiments. In the TMA step, we observe increased accuracy from the Bosanquet formula and we reproduce multiple independent experiments with the same parameter set, highlighting that the model parameters effectively capture the reactor conditions.