论文标题

多项式环的驯服自动形态组(t)和无限的许多交替组商

Tame automorphism groups of polynomial rings with property (T) and infinitely many alternating group quotients

论文作者

Caprace, Pierre-Emmanuel, Kassabov, Martin

论文摘要

我们建立了具有财产(T)的团体的新家庭和无限的许多交替群体商。其中一个由$ \ mathrm {aut}的子组组成(\ mathbf f_ {p} [x_1,\ dots,x_n])$由合适的驯服自动形态产生。使用$ \ mathrm {aut}的自然动作(\ Mathbf f_ {p} [x_1,\ dots,x_n])$在$ n $二维仿射空间上构建有限商。结果,我们获得了具有特性(T)和许多交替的组商的Gromov双曲线群的明确演示。我们的建筑还产生了一个明显的无限股东科利(Cayley)的家族,用于交替的$ p^7-1 $的交替$ p^7-1 $的ebayley图表$ 4 $。

We construct new families of groups with property (T) and infinitely many alternating group quotients. One of those consists of subgroups of $\mathrm{Aut}(\mathbf F_{p}[x_1, \dots, x_n])$ generated by a suitable set of tame automorphisms. Finite quotients are constructed using the natural action of $\mathrm{Aut}(\mathbf F_{p}[x_1, \dots, x_n])$ on the $n$-dimensional affine spaces over finite extensions of $\mathbf F_p$. As a consequence, we obtain explicit presentations of Gromov hyperbolic groups with property (T) and infinitely many alternating group quotients. Our construction also yields an explicit infinite family of expander Cayley graphs of degree $4$ for alternating groups of degree $p^7-1$ for any odd prime $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源