论文标题

深空白域概括

Deep Spatial Domain Generalization

论文作者

Yu, Dazhou, Bai, Guangji, Li, Yun, Zhao, Liang

论文摘要

空间数据中广泛存在空间自相关和空间异质性,这使传统的机器学习模型的表现不佳。空间结构域的概括是域概括的空间扩展,它可以推广到连续2D空间中看不见的空间域。具体而言,它在不同的数据分布下学习了一个模型,该模型概括为看不见的域。尽管在领域的概括中已经取得了巨大的成功,但在空间领域的概括上很少有作品。该领域的进步挑战:1)难以表征空间异质性,以及2)在没有训练数据的情况下难以获得未见位置的预测模型。为了应对这些挑战,本文提出了一个用于空间领域概括的通用框架。具体而言,我们开发了空间插值图神经网络,该神经网络将空间数据作为图处理,并了解每个节点及其关系上的空间嵌入。空间插值图神经网络在测试阶段渗透了看不见的位置的空间嵌入。然后,使用目标位置的空间嵌入来解码目标位置上下游任务模型的参数。最后,对13个现实世界数据集进行的广泛实验证明了该方法的强度。

Spatial autocorrelation and spatial heterogeneity widely exist in spatial data, which make the traditional machine learning model perform badly. Spatial domain generalization is a spatial extension of domain generalization, which can generalize to unseen spatial domains in continuous 2D space. Specifically, it learns a model under varying data distributions that generalizes to unseen domains. Although tremendous success has been achieved in domain generalization, there exist very few works on spatial domain generalization. The advancement of this area is challenged by: 1) Difficulty in characterizing spatial heterogeneity, and 2) Difficulty in obtaining predictive models for unseen locations without training data. To address these challenges, this paper proposes a generic framework for spatial domain generalization. Specifically, We develop the spatial interpolation graph neural network that handles spatial data as a graph and learns the spatial embedding on each node and their relationships. The spatial interpolation graph neural network infers the spatial embedding of an unseen location during the test phase. Then the spatial embedding of the target location is used to decode the parameters of the downstream-task model directly on the target location. Finally, extensive experiments on thirteen real-world datasets demonstrate the proposed method's strength.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源