论文标题

用量子信号处理的扰动理论

Perturbation theory with quantum signal processing

论文作者

Mitarai, Kosuke, Toyoizumi, Kiichiro, Mizukami, Wataru

论文摘要

扰动理论是降低计算成本并在使用古典计算机模拟量子系统时提供物理见解的重要技术。在这里,我们提供了一种量子算法,以在量子计算机上获得扰动能量。使用量子计算机的好处是,我们可以从很难解决的哈密顿量开始扰动。所提出的算法使用量子信号处理(QSP)实现此目标。与扰动理论一起,我们通过详细的计算成本分析构建了一种用于基态制备的技术,这可能具有独立的兴趣。我们还估计了简单化学系统(例如水簇和多推分子)的算法的粗略计算成本。据我们所知,这是QSP实际应用的此类估计中的第一个。不幸的是,我们发现,尽管与常规量子算法相比,尽管QSP的效率具有QSP的效率,但至少以当前形式以当前形式表现出了所提出的算法。但是,扰动理论本身是一个有吸引力的方向,因为它的物理解释性。它为我们提供了有关哪种交互作用为系统属性做出重要贡献的见解。这与基于量子相估计算法的常规方法形成鲜明对比,我们只能获得能量值。从这方面,这项工作是迈向``可解释''量子量子计算机上的``可解释''量子模拟的第一步。

Perturbation theory is an important technique for reducing computational cost and providing physical insights in simulating quantum systems with classical computers. Here, we provide a quantum algorithm to obtain perturbative energies on quantum computers. The benefit of using quantum computers is that we can start the perturbation from a Hamiltonian that is classically hard to solve. The proposed algorithm uses quantum signal processing (QSP) to achieve this goal. Along with the perturbation theory, we construct a technique for ground state preparation with detailed computational cost analysis, which can be of independent interest. We also estimate a rough computational cost of the algorithm for simple chemical systems such as water clusters and polyacene molecules. To the best of our knowledge, this is the first of such estimates for practical applications of QSP. Unfortunately, we find that the proposed algorithm, at least in its current form, does not exhibit practical numbers despite of the efficiency of QSP compared to conventional quantum algorithms. However, perturbation theory itself is an attractive direction to explore because of its physical interpretability; it provides us insights about what interaction gives an important contribution to the properties of systems. This is in sharp contrast to the conventional approaches based on the quantum phase estimation algorithm, where we can only obtain values of energy. From this aspect, this work is a first step towards ``explainable'' quantum simulation on fault-tolerant quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源