论文标题

RISC-V工具链和基于敏捷开发的开源神经形态处理器

RISC-V Toolchain and Agile Development based Open-source Neuromorphic Processor

论文作者

Wang, Jiulong, Wu, Ruopu, Chen, Guokai, Chen, Xuhao, Liu, Boran, Zong, Jixiang, Zhao, Di

论文摘要

近几十年来,旨在模仿大脑行为的神经形态计算已在计算机科学的各个领域开发。人工神经网络(ANN)是人工智能(AI)中的重要概念。它用于识别和分类。为了探索一种更好的方法,可以在硬件上快速且节能,这是快速且节能的方法,研究人员需要一种先进的方法,例如神经形态计算。在这种情况下,尖峰神经网络(SNN)成为硬件实现的最佳选择。最近的工作着重于加速SNN计算。但是,大多数加速器解决方案基于CPU-ACCELERATOR架构,由于该结构中的复杂控制流动,因此能够能提供能量。本文提出了Wenquxing 22a,这是一种低功耗神经形态处理器,结合通用CPU函数和SNN,以通过RISC-V SNN扩展指令有效地计算出来。 Wenquxing 22a的主要思想是将SNN计算单元集成到通用CPU的管道中,以使用自定义的RISC-V SNN指令版本1.0(RV-SNN V1.0)实现低功率计算,流化的泄漏泄漏的集成和磁通(LIF)模型(LIF)模型,以及Binary Stochostastic Spike-Spike-Spike-timplastictsplastictsitection(Styplastictsitection)(Styplastic)(Stdplastic)(Stdplastic)(Stndplastic)。 Wenquxing 22a的源代码在Gitee和Github上在线发布。我们将Wenquxing 22A应用于MNIST数据集的识别,以与其他SNN系统进行比较。我们的实验结果表明,Wenquxing 22A比加速器解决方案ODIN的能量费用升高了5.13倍,其分类精度约为85.00%,用于3位ODIN在线学习,而1位Wenquxing 22a的能量费用为85.00%,为91.91%。

In recent decades, neuromorphic computing aiming to imitate brains' behaviors has been developed in various fields of computer science. The Artificial Neural Network (ANN) is an important concept in Artificial Intelligence (AI). It is utilized in recognition and classification. To explore a better way to simulate obtained brain behaviors, which is fast and energy-efficient, on hardware, researchers need an advanced method such as neuromorphic computing. In this case, Spiking Neural Network (SNN) becomes an optimal choice in hardware implementation. Recent works are focusing on accelerating SNN computing. However, most accelerator solutions are based on CPU-accelerator architecture which is energy-inefficient due to the complex control flows in this structure. This paper proposes Wenquxing 22A, a low-power neuromorphic processor that combines general-purpose CPU functions and SNN to efficiently compute it with RISC-V SNN extension instructions. The main idea of Wenquxing 22A is to integrate the SNN calculation unit into the pipeline of a general-purpose CPU to achieve low-power computing with customized RISC-V SNN instructions version 1.0 (RV-SNN V1.0), Streamlined Leaky Integrate-and-Fire (LIF) model, and the binary stochastic Spike-timing-dependent-plasticity (STDP). The source code of Wenquxing 22A is released online on Gitee and GitHub. We apply Wenquxing 22A to the recognition of the MNIST dataset to make a comparison with other SNN systems. Our experiment results show that Wenquxing 22A improves the energy expenses by 5.13 times over the accelerator solution, ODIN, with approximately classification accuracy, 85.00% for 3-bit ODIN online learning, and 91.91% for 1-bit Wenquxing 22A.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源