论文标题

基于梯度跟踪的分布式优化,并在嘈杂信息共享下保证最优性

Gradient-tracking based Distributed Optimization with Guaranteed Optimality under Noisy Information Sharing

论文作者

Wang, Yongqiang, Başar, Tamer

论文摘要

分布式优化使网络代理可以合作解决全局优化问题,即使每个参与代理只能访问目标函数的本地部分视图。尽管引起了重大影响,但大多数现有的分布式优化结果都取决于代理之间的无噪声信息共享,当沟通渠道嘈杂时,这是有问题的,消息被量化了,或者通过添加噪声掩盖了共享信息,以实现差异隐私。在基于最新的基于梯度跟踪的分布式优化算法中,信息共享噪声的问题尤其明显,因为在这些算法的梯度跟踪估计上进行迭代会累积信息共享的噪声,并且在噪声稳定时,随后的差异甚至在噪声范围时甚至会变得无限。本文提出了一种新的基于梯度跟踪的分布式优化方法,该方法可以避免在梯度估计中积累信息共享噪声。即使{代理之间的相互作用是}时间变化,该方法也适用,这是使衰减因子在代理间相互作用中逐渐消除信息共享噪声的影响的关键。实际上,我们严格地证明所提出的方法可以确保即使在存在持续的信息共享噪声的情况下,也可以确保所有代理几乎可以确保所有代理融合相同的最佳解决方案。该方法适用于通用的定向图。当梯度嘈杂时,它也能够确保所有代理几乎确定的融合到最佳解决方案,这在机器学习应用中很常见。数值模拟证实了拟议方法的有效性。

Distributed optimization enables networked agents to cooperatively solve a global optimization problem even with each participating agent only having access to a local partial view of the objective function. Despite making significant inroads, most existing results on distributed optimization rely on noise-free information sharing among the agents, which is problematic when communication channels are noisy, messages are coarsely quantized, or shared information are obscured by additive noise for the purpose of achieving differential privacy. The problem of information-sharing noise is particularly pronounced in the state-of-the-art gradient-tracking based distributed optimization algorithms, in that information-sharing noise will accumulate with iterations on the gradient-tracking estimate of these algorithms, and the ensuing variance will even grow unbounded when the noise is persistent. This paper proposes a new gradient-tracking based distributed optimization approach that can avoid information-sharing noise from accumulating in the gradient estimation. The approach is applicable even when the {inter-agent interaction is} time-varying, which is key to enable the incorporation of a decaying factor in inter-agent interaction to gradually eliminate the influence of information-sharing noise. In fact, we rigorously prove that the proposed approach can ensure the almost sure convergence of all agents to the same optimal solution even in the presence of persistent information-sharing noise. The approach is applicable to general directed graphs. It is also capable of ensuring the almost sure convergence of all agents to an optimal solution when the gradients are noisy, which is common in machine learning applications. Numerical simulations confirm the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源