论文标题

Vflens:通过可视化共同设计用于有效垂直联合学习的建模过程

VFLens: Co-design the Modeling Process for Efficient Vertical Federated Learning via Visualization

论文作者

Tian, Yun, Wang, He, Xie, Laixin, Ma, Xiaojuan, Li, Quan

论文摘要

作为一种分散的培训方法,联邦学习使多个组织能够在不暴露其私人数据的情况下共同培训模型。这项工作调查了垂直联合学习(VFL),以解决协作组织具有相同用户但具有不同功能的方案,并且只有一个党派拥有标签。尽管VFL表现出良好的表现,但在准备非透明,内部/外部功能和VFL训练阶段的样本时,从业者通常会面临不确定性。此外,为了平衡预测准确性和模型推理的资源消耗,从业者需要知道真正需要哪个预测实例的子集来调用VFL模型进行推理。为此,我们通过提出交互式实时可视化系统VFLENS来协调VFL建模过程,以帮助从业人员进行功能工程,样本选择和推理。用法方案,定量实验和专家反馈表明,VFLENS以较低的成本有助于实践者提高VFL效率,以足够的信心。

As a decentralized training approach, federated learning enables multiple organizations to jointly train a model without exposing their private data. This work investigates vertical federated learning (VFL) to address scenarios where collaborating organizations have the same set of users but with different features, and only one party holds the labels. While VFL shows good performance, practitioners often face uncertainty when preparing non-transparent, internal/external features and samples for the VFL training phase. Moreover, to balance the prediction accuracy and the resource consumption of model inference, practitioners require to know which subset of prediction instances is genuinely needed to invoke the VFL model for inference. To this end, we co-design the VFL modeling process by proposing an interactive real-time visualization system, VFLens, to help practitioners with feature engineering, sample selection, and inference. A usage scenario, a quantitative experiment, and expert feedback suggest that VFLens helps practitioners boost VFL efficiency at a lower cost with sufficient confidence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源