论文标题
用于计算晶体材料带图的修改操作方法
Modified-operator method for the calculation of band diagrams of crystalline materials
论文作者
论文摘要
在固态物理学中,晶体材料的电子特性通常是从周期性施罗丁算子的光谱中推断出来的。由于Bloch的定理的结果是,电子量的数值计算涉及在所谓的能量频段的布里鲁因区域上计算衍生物或积分,这些衍生物是所谓的能量带的,它们是分段平滑的,Lipschitz连续的周期性函数,通过求解eLiptic eLliptic eigenvalue问题,可在求解周期性函数的参数eigenvalue问题上获得。解决这些特征值问题的经典离散策略会产生非周期性或不连续的近似能带,在计算数值衍生物或使用数值正交时,这两者都会引起困难。在本文中,我们研究了一种基于临时操作员修改方法的替代离散策略。尽管在物理文献中提出了这种方法的特定实例,但我们在这里介绍了该操作员修改方法的系统表述。我们得出了所得能带的先验误差估计,我们表明这些频段是周期性的,可以通过调整操作员修改方法中的合适参数来任意平滑(远离带交叉)。涉及1D玩具模型的数值实验,2D中的石墨烯和3D中的硅验证了我们的理论结果,并展示了操作员修改方法的效率。
In solid state physics, electronic properties of crystalline materials are often inferred from the spectrum of periodic Schrödinger operators. As a consequence of Bloch's theorem, the numerical computation of electronic quantities of interest involves computing derivatives or integrals over the Brillouin zone of so-called energy bands, which are piecewise smooth, Lipschitz continuous periodic functions obtained by solving a parametrized elliptic eigenvalue problem on a Hilbert space of periodic functions. Classical discretization strategies for resolving these eigenvalue problems produce approximate energy bands that are either non-periodic or discontinuous, both of which cause difficulty when computing numerical derivatives or employing numerical quadrature. In this article, we study an alternative discretization strategy based on an ad hoc operator modification approach. While specific instances of this approach have been proposed in the physics literature, we introduce here a systematic formulation of this operator modification approach. We derive a priori error estimates for the resulting energy bands and we show that these bands are periodic and can be made arbitrarily smooth (away from band crossings) by adjusting suitable parameters in the operator modification approach. Numerical experiments involving a toy model in 1D, graphene in 2D, and silicon in 3D validate our theoretical results and showcase the efficiency of the operator modification approach.