论文标题
金属有机kagome系统作为研究旋转液体,旋转冰或量子异常效应的候选者
Metal-organic kagome systems as candidates to study spin liquids, spin ice or the quantum anomalous Hall effect
论文作者
论文摘要
我们使用维也纳AB-Initio仿真软件包(VASP)介绍了一类标有TM3C6O6(TM = SC,Ti,Ti,V,Cr,Fe,Fe,Co,Ni和Cu)的新的有机金属的结果,该结果以平面,二维,定期免费的,定期免费的层。这些材料可以通过在金属表面上的表面配位产生,具有TM离子的Kagome晶格。计算结构特性,我们表明所有被考虑的材料都具有基态局部磁矩,但是其中四个(与Fe,Co,Ni和Cu)通过更改晶格常数显示出旋转的交叉行为,这对于各种底物上可能的外观途径可能很有价值。令人惊讶的是,我们发现电子和磁性的丰富度很大,将这些材料作为高度有希望的金属有机拓扑量子材料进行了资格。我们发现分别具有邻居邻磁性(FM)的半导体或抗铁磁(AFM)耦合,分别为V,SC和CR,是研究2D Kagome lattice上旋转冰或旋转液体的潜在兴趣。其他TM离子系统将AFM耦合与金属行为(Ti,Fe和Ni)相结合,或者是诸如Cu3C6O6(例如Cu3C6O6)的铁磁kagome金属,以及在费米表面的对称性保护的Weyl横梁。对于后一种化合物,旋转轨道耦合被证明是造成较小的间隙的原因,该间隙应允许观察量子异常效应(QAHE)。
We present the results of first-principle calculations using the Vienna Ab-initio Simulation Package (VASP) for a new class of organometallics labeled TM3C6O6 (TM =Sc, Ti, V, Cr, Fe, Co, Ni and Cu) in the form of planar, two-dimensional, periodic free-standing layers. These materials, which can be produced by on-surface coordination on metallic surfaces, have a kagome lattice of TM ions. Calculating the structural properties, we show that all considered materials have local magnetic moments in the ground state, but four of them (with Fe, Co, Ni and Cu) show spin-crossover behavior by changing the lattice constant, which could be valuable for possible epitaxy routes on various substrates. Surprisingly, we find a very large richness of electronic and magnetic properties, qualifying these materials as highly promising metal-organic topological quantum materials. We find semi-conductors with nearest-neighbor ferromagnetic (FM) or antiferromagnetic (AFM) couplings for V, and Sc and Cr, respectively, being of potential interest to study spin ice or spin liquids on the 2D kagome lattice. Other TM ion systems combine AFM couplings with metallic behavior (Ti, Fe and Ni) or are ferromagnetic kagome metals like Cu3C6O6 with symmetry protected Weyl crossings at the Fermi surface. For the latter compound, the spin orbit coupling is shown to be responsible for small gaps which should allow the observation of the quantum anomalous Hall effect (QAHE).