论文标题
改进神经主动学习算法
Improved Algorithms for Neural Active Learning
论文作者
论文摘要
我们改善了基于非参数流媒体设置的基于神经网络(NN)的主动学习算法的理论和经验性能。特别是,我们通过最大程度地减少与最新相关工作(SOTA)相关的工作更适合活跃学习的人口损失来介绍两个遗憾指标。然后,提出的算法利用NNS的强大表示进行剥削和探索,具有针对$ k $ - 类别分类问题的询问决策者,具有绩效保证,利用完整的反馈,并以更实用和有效的方式更新参数。这些仔细的设计导致了依赖实例的遗憾上限,通过乘法因子$ o(\ log t)$大致改进,并消除了输入维度的诅咒。此外,我们表明,从长远来看,在分类问题的硬质量设置下,算法可以在长期以来达到与贝叶斯最佳分类器相同的性能。最后,我们使用广泛的实验来评估所提出的算法和SOTA基准,以显示改进的经验性能。
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting. In particular, we introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work. Then, the proposed algorithm leverages the powerful representation of NNs for both exploitation and exploration, has the query decision-maker tailored for $k$-class classification problems with the performance guarantee, utilizes the full feedback, and updates parameters in a more practical and efficient manner. These careful designs lead to an instance-dependent regret upper bound, roughly improving by a multiplicative factor $O(\log T)$ and removing the curse of input dimensionality. Furthermore, we show that the algorithm can achieve the same performance as the Bayes-optimal classifier in the long run under the hard-margin setting in classification problems. In the end, we use extensive experiments to evaluate the proposed algorithm and SOTA baselines, to show the improved empirical performance.