论文标题
(非) - 具有有限区块和线性处理的合并MU-MIMO块褪色通道
(Non)-Coherent MU-MIMO Block Fading Channels with Finite Blocklength and Linear Processing
论文作者
论文摘要
本文研究了有限的区块长度制度中的连贯和非相关的多源多输入多输入(MU-MIMO)上行链路系统。 I.I.D.假定每个用户都假定高斯密码簿。更具体地说,BS首先使用两个流行的线性处理方案来结合所有用户传输的信号,即MRC和ZF。之后,BS分别采用了匹配的最大似然性(ML)和不匹配的最近的邻居(NN)解码指标,分别在BS处使用。在这些条件下,得出了根据区块长度的函数,平均误差概率和信息密度(称为通道扰动)的三阶项表示的精制三阶可实现的编码率。通过手头,进行了详细的性能分析,通过该分析,我们通过该分析得出了通道扰动,可实现的编码率,通道容量和通道分散的渐近结果。这些理论上的结果使我们能够获得与有限区块长度的影响相关的许多有趣的见解:i)在我们的系统设置中,大量的MIMO有助于减少可实现的编码率的渠道扰动,甚至可以在不影响少量的BS Antennas和块数量的情况下不影响性能而不会影响性能; ii)在非固定情况下,即使使用大量的MIMO,也无法消除通道估计误差,除非在通道估计中的发射功率和每个用户的数据传输阶段的发射功率与BS天线数量的平方根成反比; iii)在非固定情况下,对于固定的总区块长度,具有较长相干间隔和较小块数量的场景可提供更高的可实现的编码率。
This paper studies the coherent and non-coherent multiuser multiple-input multiple-output (MU-MIMO) uplink system in the finite blocklength regime. The i.i.d. Gaussian codebook is assumed for each user. To be more specific, the BS first uses two popular linear processing schemes to combine the signals transmitted from all users, namely, MRC and ZF. Following it, the matched maximum-likelihood (ML) and mismatched nearest-neighbour (NN) decoding metric for the coherent and non-coherent cases are respectively employed at the BS. Under these conditions, the refined third-order achievable coding rate, expressed as a function of the blocklength, average error probability, and the third-order term of the information density (called as the channel perturbation), is derived. With this result in hand, a detailed performance analysis is then pursued, through which, we derive the asymptotic results of the channel perturbation, achievable coding rate, channel capacity, and the channel dispersion. These theoretical results enable us to obtain a number of interesting insights related to the impact of the finite blocklength: i) in our system setting, massive MIMO helps to reduce the channel perturbation of the achievable coding rate, which can even be discarded without affecting the performance with just a small-to-moderate number of BS antennas and number of blocks; ii) under the non-coherent case, even with massive MIMO, the channel estimation errors cannot be eliminated unless the transmit powers in both the channel estimation and data transmission phases for each user are made inversely proportional to the square root of the number of BS antennas; iii) in the non-coherent case and for fixed total blocklength, the scenarios with longer coherence intervals and smaller number of blocks offer higher achievable coding rate.