论文标题
使用Kirchhoff转换的Richards方程来建模渗透的局部RBF方法
Localized RBF methods for modeling infiltration using the Kirchhoff-transformed Richards equation
论文作者
论文摘要
我们开发了一种新方法来基于Kirchhoff变换和局部径向基函数(LRBF)技术来求解非线性理查兹方程。我们的目的是降低管理方程的非线性,并应用LRBF方法来建模通过异质土壤的不饱和流。在我们的方法论中,我们提出了特殊的技术,该技术涉及介质的异质性,以便应用基尔乔夫(Kirchhoff)转换,在该转化中,我们将brooks and corey模型用于毛细管压力函数,并在相对渗透率函数的饱和度中使用饱和的幂律关系。新方法使我们能够避免由于土壤异质性而导致的基尔chhoff转换中遇到的技术问题,以降低模型方程的非线性。由此产生的Kirchhoff转换的Richards方程是使用LRBF方法来解决的,LRBF方法在计算成本方面具有优势,因为它们不需要网格。此外,这些LRBF技术导致具有稀疏矩阵的系统,这使我们能够避免条件不足的问题。为了验证开发的方法来预测多孔介质中不饱和流动的动力学,在一,二和三维的土壤中进行数值实验。数值结果证明了通过异质土壤对浸润进行建模的提出技术的效率和准确性。
We develop a new approach to solve the nonlinear Richards equation based on the Kirchhoff transformation and localized radial basis function (LRBF) techniques. Our aim is to reduce the nonlinearity of the governing equation and apply LRBF methods for modeling unsaturated flow through heterogeneous soils. In our methodology, we propose special techniques which deal with the heterogeneity of the medium in order to apply the Kirchhoff transformation where we used the Brooks and Corey model for the capillary pressure function and a power-law relation in saturation for the relative permeability function. The new approach allows us to avoid the technical issues encountered in the Kirchhoff transformation due to soil heterogeneity in order to reduce the nonlinearity of the model equation. The resulting Kirchhoff-transformed Richards equation is solved using LRBF methods which have advantages in terms of computational cost since they don't require mesh generation. Furthermore, these LRBF techniques lead to a system with a sparse matrix which allows us to avoid ill-conditioned issues. To validate the developed approach for predicting the dynamics of unsaturated flow in porous media, numerical experiments are performed in one, two, and three-dimensional soils. The numerical results demonstrate the efficiency and accuracy of the proposed techniques for modeling infiltration through heterogeneous soils.