论文标题

在概括的海森堡的三重张量产品上,排名$ \ leq2 $

On the triple tensor product of generalized Heisenberg Lie superalgebra of rank $\leq2$

论文作者

Hasan, Ibrahem Yakzan, Padhan, Rudra Narayan

论文摘要

在本文中,我们计算了所有广义海森堡的Schur乘数,排名$ 2 $。我们讨论$ \ otimes^3h $和$ \ wedge^3h $的结构,其中$ h $是概括的Heisenberg Lie Superalgebra,属于$ \ leq2 $。此外,我们证明,如果$ l $是$(m \ mid n)$ - 尺寸非亚伯式nilpotent lie superalgebra,则具有dimension $(r \ mid s)$的subalgebra,则是$ \ \ dim \ otimes^3l^3l \ leq(m+n)(m+n-(m+n-(m+s))^2 $。特别是,对于$ r = 1,s = 0 $,当时仅当$ l \ cong h(1 \ mid 0)$时,相等性。

In this article, we compute the Schur multiplier of all generalized Heisenberg Lie superalgebras of rank $2$. We discuss the structure of $\otimes^3H$ and $\wedge^3H$ where $H$ is a generalized Heisenberg Lie superalgebra of rank $\leq2$. Moreover, we prove that if $L$ is an $(m\mid n)$-dimensional non-abelian nilpotent Lie superalgebra with derived subalgebra of dimension $(r\mid s)$, then $\dim\otimes^3L \leq (m+n)(m+n - (r+s))^2$. In particular, for $r=1,s=0$ the equality holds if and only if $L \cong H(1\mid 0)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源