论文标题

关于保留内核距离的随机傅立叶特征的相对误差

On The Relative Error of Random Fourier Features for Preserving Kernel Distance

论文作者

Cheng, Kuan, Jiang, Shaofeng H. -C., Wei, Luojian, Wei, Zhide

论文摘要

Rahimi和Recht(NIPS'07)在开创性论文中提出的随机傅立叶特征(RFF)的方法是一种强大的技术,可在(高维)内核空间中找到近似的低维度表示,用于移位不变的内核。尽管已在各种错误保证概念中分析了RFF,但较少了解使用\ emph {相对}误差的内核距离的能力。我们表明,对于包括众所周知的laplacian内核在内的大量内核,RFF无法使用低维度近似近近距离距离,而相对误差较小。我们通过显示换档不变的内核进行分析,以$ \ mathrm {poly}(ε^{ - 1} \ log n)$ dimensions达到$ n $的成对内核距离的$ \^$ kermmatrmmmagrm {ε{poly {poly {poly mathrmmit,我们可以通过$ \ mathrm {poly}(ε^{ - 1} \ log n)$ dimensions的差异,而对此进行补充。内核$ k $ -means的特定应用。最后,超越了RFF,我们迈出了通用换档内核迈向数据缩小尺寸的第一步,并且我们获得了类似的$ \ mathrm {poly}(ε^{ - 1} \ log n)$ dimension bongians laplacian bort。我们还验证了我们在模拟数据集上方法的维度折衷方案,并且与其他流行的方法相比,它们表现出卓越的性能,包括随机预测和NyStröm方法。

The method of random Fourier features (RFF), proposed in a seminal paper by Rahimi and Recht (NIPS'07), is a powerful technique to find approximate low-dimensional representations of points in (high-dimensional) kernel space, for shift-invariant kernels. While RFF has been analyzed under various notions of error guarantee, the ability to preserve the kernel distance with \emph{relative} error is less understood. We show that for a significant range of kernels, including the well-known Laplacian kernels, RFF cannot approximate the kernel distance with small relative error using low dimensions. We complement this by showing as long as the shift-invariant kernel is analytic, RFF with $\mathrm{poly}(ε^{-1} \log n)$ dimensions achieves $ε$-relative error for pairwise kernel distance of $n$ points, and the dimension bound is improved to $\mathrm{poly}(ε^{-1}\log k)$ for the specific application of kernel $k$-means. Finally, going beyond RFF, we make the first step towards data-oblivious dimension-reduction for general shift-invariant kernels, and we obtain a similar $\mathrm{poly}(ε^{-1} \log n)$ dimension bound for Laplacian kernels. We also validate the dimension-error tradeoff of our methods on simulated datasets, and they demonstrate superior performance compared with other popular methods including random-projection and Nyström methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源