论文标题
功能治疗的因果
Causal Effect of Functional Treatment
论文作者
论文摘要
我们研究了功能治疗变量的因果效应,在神经科学,生物医学科学等中经常出现实际应用。先前关于功能变量对结果影响的研究通常仅限于探索相关性而不是因果关系。由于缺乏对功能数据的概率密度函数的定义,通常用于校准选择偏置的广义倾向评分并不直接适用于功能处理变量。我们提出了基于功能线性模型的平均剂量响应功能的三个估计量,即功能稳定的权重估计器,结果回归估计器和双重稳健估计器,每个估计量都有其自身的优点。我们研究了它们的理论特性,这些特性通过广泛的数值实验得到了证实。脑电图数据和疾病严重程度上的实际数据应用显示了我们方法的实际价值。
We study the causal effect with a functional treatment variable, where practical applications often arise in neuroscience, biomedical sciences, etc. Previous research concerning the effect of a functional variable on an outcome is typically restricted to exploring correlation rather than causality. The generalized propensity score, which is often used to calibrate the selection bias, is not directly applicable to a functional treatment variable due to a lack of definition of probability density function for functional data. We propose three estimators for the average dose-response functional based on the functional linear model, namely, the functional stabilized weight estimator, the outcome regression estimator and the doubly robust estimator, each of which has its own merits. We study their theoretical properties, which are corroborated through extensive numerical experiments. A real data application on electroencephalography data and disease severity demonstrates the practical value of our methods.