论文标题

注意直肠肿瘤分割的增强Convnext UNET

Attention Augmented ConvNeXt UNet For Rectal Tumour Segmentation

论文作者

Wu, Hongwei, Wang, Junlin, Wang, Xin, Nan, Hui, Wang, Yaxin, Jing, Haonan, Shi, Kaixuan

论文摘要

通过深度学习将直肠癌肿瘤的位置和大小分割为挑战。在本文中,为了提高直肠肿瘤分割中提取有足够的特征信息的能力,提出了注意扩大的Convnext UNET(AACN-UNET)。网络主要包括两个改进:1)UNET的编码器阶段已更改为用于编码操作的Convnext结构,这不仅可以大规模整合多尺度语义信息,而且还可以减少信息丢失并从CT图像中提取更多功能信息; 2)添加了CBAM注意机制以改善频道和空间中每个特征的连接,这有利于提取目标的有效特征并提高了分割精度。对UNET及其变体网络的实验表明,AACN-UNET为0.9%,1.1%,1.1%和1.4%的培训量和MIOU的最佳结果比当前的最佳结果和MIOU的培训时间更高。这表明我们提出的AACN-UNET已在直肠癌的CT图像分割中取得了前列结果。

It is a challenge to segment the location and size of rectal cancer tumours through deep learning. In this paper, in order to improve the ability of extracting suffi-cient feature information in rectal tumour segmentation, attention enlarged ConvNeXt UNet (AACN-UNet), is proposed. The network mainly includes two improvements: 1) the encoder stage of UNet is changed to ConvNeXt structure for encoding operation, which can not only integrate multi-scale semantic information on a large scale, but al-so reduce information loss and extract more feature information from CT images; 2) CBAM attention mechanism is added to improve the connection of each feature in channel and space, which is conducive to extracting the effective feature of the target and improving the segmentation accuracy.The experiment with UNet and its variant network shows that AACN-UNet is 0.9% ,1.1% and 1.4% higher than the current best results in P, F1 and Miou.Compared with the training time, the number of parameters in UNet network is less. This shows that our proposed AACN-UNet has achieved ex-cellent results in CT image segmentation of rectal cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源