论文标题
使用pino-cde求解耦合的微分方程组
Solving Coupled Differential Equation Groups Using PINO-CDE
论文作者
论文摘要
作为许多工程学科的基本数学工具,耦合的微分方程组被广泛用于模拟包含多个物理量的复杂结构。工程师在设计阶段不断调整结构参数,这需要一个高效的求解器。深度学习技术的兴起为这项任务提供了新的观点。不幸的是,现有的黑框模型的精度和鲁棒性差,而单输出操作员回归的先进方法不能同时处理多个数量。为了应对这些挑战,我们提出了Pino-CDE,这是一个深度学习框架,用于求解耦合的微分方程组(CDE)以及方程归一化算法,用于增强性能。基于物理信息理论(Pino),Pino-CDE使用单个网络来用于CDE中的所有数量,而不是训练数十个甚至数百个网络,如现有文献中。我们证明了Pino-CDE在一个玩具示例和两个工程应用中的灵活性和可行性:车辆轨道耦合动力学(VTCD)和四层建筑(不确定性繁殖)的可靠性评估。 VTCD的性能表明,Pino-CDE在效率和精度方面分别优于现有软件和深度学习方法。对于不确定性繁殖任务,Pino-CDE提供的更高分辨率的结果在使用概率密度演化方法(PDEM)时所产生的时间不到四分之一。该框架集成了工程动力学和深度学习技术,并可能揭示了解决CDS解决和不确定性传播的新概念。
As a fundamental mathmatical tool in many engineering disciplines, coupled differential equation groups are being widely used to model complex structures containing multiple physical quantities. Engineers constantly adjust structural parameters at the design stage, which requires a highly efficient solver. The rise of deep learning technologies has offered new perspectives on this task. Unfortunately, existing black-box models suffer from poor accuracy and robustness, while the advanced methodologies of single-output operator regression cannot deal with multiple quantities simultaneously. To address these challenges, we propose PINO-CDE, a deep learning framework for solving coupled differential equation groups (CDEs) along with an equation normalization algorithm for performance enhancing. Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs, instead of training dozens, or even hundreds of networks as in the existing literature. We demonstrate the flexibility and feasibility of PINO-CDE for one toy example and two engineering applications: vehicle-track coupled dynamics (VTCD) and reliability assessment for a four-storey building (uncertainty propagation). The performance of VTCD indicates that PINO-CDE outperforms existing software and deep learning-based methods in terms of efficiency and precision, respectively. For the uncertainty propagation task, PINO-CDE provides higher-resolution results in less than a quarter of the time incurred when using the probability density evolution method (PDEM). This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.