论文标题

两光子地面 - 莱德堡过渡和有限的rydberg封锁强度

Off-resonant modulated driving gate protocols for two-photon ground-Rydberg transition and finite Rydberg blockade strength

论文作者

Sun, Yuan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recently, the notion of two-qubit controlled phase gate via off-resonant modulated driving has been introduced into the neutral atom qubit platform, with respect to both single-photon and two-photon ground-Rydberg transitions. In order to reach a better performance practically, further developments are in need to overcome a few known limitations in previous discussions of this promising method. Here, we thoroughly analyze a variety of modulation styles for two-photon transitions, demonstrating the versatility of off-resonant modulated driving protocols. Furthermore, we show that it is possible to refine the designing process for improved performances for specific finite Rydberg blockade strength values. In particular, a reduced requirement on the blockade strength can be directly linked to an improvement of connectivity in qubit array of neutral atoms. These progress are closely related to the core feature that the atomic wave function acquires a geometric phase from the time evolution, which begins and finishes at the same quantum state. Under reasonable experimental conditions readily available nowadays, we anticipate that the fidelity of such protocols can reach as high as the essential requirement of NISQ even if the effects of technical errors and cold atoms' nonzero temperatures are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源